
PROTEUS DESIGN
SUITE

IoT Builder Help

COPYRIGHT NOTICE

© Labcenter Electronics Ltd 1990-2019. All Rights Reserved.
The Proteus software programs (Proteus Capture, PROSPICE Simulation, Schematic Capture
and PCB Layout) and their associated library files, data files and documentation are copyright ©
Labcenter Electronics Ltd. All rights reserved. You have bought a licence to use the software on
one machine at any one time; you do not own the software. Unauthorized copying, lending, or
re-distribution of the software or documentation in any manner constitutes breach of copyright.
Software piracy is theft.

PROSPICE incorporates source code from Berkeley SPICE3F5 which is copyright © Regents of
Berkeley University. Manufacturer’s SPICE models included with the software are copyright of
their respective originators.

The Qt GUI Toolkit is copyright © 2012 Digia Plc and/or its subsidiary(-ies) and licensed under
the LGPL version 2.1. Some icons are copyright © 2010 The Eclipse Foundation licensed under
the Eclipse Public Licence version 1.0. Some executables are from binutils and are copyright ©
2010 The GNU Project, licensed under the GPL 2.

WARNING
You may make a single copy of the software for backup purposes. However, you are warned
that the software contains an encrypted serialization system. Any given copy of the software is
therefore traceable to the master disk or download supplied with your licence.
Proteus also contains special code that will prevent more than one copy using a particular
licence key on a network at any given time. Therefore, you must purchase a licence key for
each copy that you want to run simultaneously.

DISCLAIMER
No warranties of any kind are made with respect to the contents of this software package, nor
its fitness for any particular purpose. Neither Labcenter Electronics Ltd nor any of its employees
or sub-contractors shall be liable for errors in the software, component libraries, simulator
models or documentation, or for any direct, indirect or consequential damages or financial
losses arising from the use of the package.
Users are particularly reminded that successful simulation of a design with the PROSPICE
simulator does not prove conclusively that it will work when manufactured. It is always best to
make a one off prototype before having large numbers of boards produced.
Manufacturers’ SPICE models included with PROSPICE are supplied on an ‘as-is’ basis and
neither Labcenter nor their originators make any warranty whatsoever as to their accuracy or
functionality

LABCENTER ELECTRONICS LTD.

2

1

TABLE OF CONTENTS

COPYRIGHT NOTICE .. 1
TABLE OF CONTENTS ... 1

IoT BUILDER TUTORIAL .. 1

What is IOTBuilder? 1

IOTBuilder Targets 2

Guided Tour 4

The Project Tree 5
The Editing Window 7

The Graphics Panel 8

The Colour Palette 9

Zoom and Navigation 10

Grids and Snap 11
TUTORIAL 1: Blink an LED .. 1

Introduction 1

Project Setup 2

Design the Front Panel 3

Writing the Program 9

Simulate and Test 13
The App 15

Programming 18

Controlling the Hardware 21
TUTORIAL 2: LOGGING THERMOMETER .. 1

Introduction 1

Front Panel Design 1
Writing the Firmware (Flowchart) 10

Simulation 24

Debug 27

2

Deployment 33
SOURCE CODE PROJECTS ... 1

Introduction 1

New Project Wizard 1

Design Phase 2
PROGRAMMING THE HARDWARE ... 1

Overview 1

Raspberry Pi 3 1
Arduino Yun via SSH 1

Arduino Yun via USB 3

Computer / Network / Lab Setup 4

Setting The Arduino Yun On To Your Network 6
THE MOBILE APP .. 1

Overview 1

Download and Installation 1

Discovery 1
ADVANCED PANEL DESIGN .. 1

How a Virtual Front Panel Works 1

Using Inkscape to Edit the Panel 1
Control Editing 3

IoT Controls ... 1

BUTTONS 1
To add a button 1

Design Time Configuration 2

Programming Methods 6
SWITCHES 7
To add a switch 7

Design Time Configuration 8

Programming Methods 11

DISPLAYS 12
To add a display control 13
Programming Methods 18

Visual Designer

3

INDICATORS 19
To add an indicator 19
Programming Methods 21

DIALS AND SLIDERS 21
To add a dial/slider 21

Design Time Configuration 22

Programming Methods 24

ALERTS 25
TEXT BOXES AND TERMINALS 27

Text Input Control 28

Teletype Terminal Control 28

Text Log Control 29
Advanced Controls ... Error! Boo

CLOCKS AND TIMERS 1

Understanding Time 2

Clock Properties 4

Timer Properties 5

LINE CHART 7

Design Time Properties 7
Programming Methods 8

BAR CHART 9

Design Time Configuration 9

Programming Methods 10

HISTOGRAM 12
To add a histogram control: 12
WIND ROSE CONTROL 14

Programming Methods 17

4

1

IoT BUILDER TUTORIAL

What is IOTBuilder?

IOTBuilder is a product that works with Proteus Visual Designer for Arduino and Visual
Designer for Raspberry Pi to allow the development of remote user interfaces to embedded
design products based on the Arduino Yun and Raspberry Pi 3 hardware.

The basic workflow is:

1. Create a Visual Designer (flowchart) project or a Proteus VSM source code project with
an IOT enabled target such as Arduino Yun or Raspberry Pi 3.

2. Add the electronic shields, sensors and breakout boards to the schematic via the Visual
Designer peripheral gallery.

3. Add IOT Controls (dials, buttons, displays, etc.) to the Virtual Front Panel and then lay
out the user interface. All of these controls hook into the main program using simple
Visual Designer flowchart methods making it quick and easy to program.

4. Write the program. All of the shields and controls discussed in the steps above present
as simple flowchart methods (Visual Designer) or as drag and drop functions (Proteus
VSM) making it simple and fun to develop.

5. Simulate and debug. Press play and interact with your front panel and your virtual
hardware on the schematic. Set breakpoints and single step debug.

LABCENTER ELECTRONICS LTD.

2

6. Deploy. Once everything is proven correct in Proteus use the programmer to deploy to
the hardware. Then use your phone, tablet or browser to control your hardware
appliance.

IOTBuilder Targets

While other target platforms are in development IoT Builder is currently targeted at Arduino and
Raspberry Pi. Arduino is supported via both the Arduino Yun board and also through the
Arduino Yun shield or ESP8266 breakout board.
Arduino Yun

From the homepage select new flowchart project and specify Arduino Yun as the target.

Arduino Yun Shield
From the homepage select new flowchart project and specify either Arduino Uno or Arduino
Mega as the target

In the flowchart module select Add Peripheral from the Project menu, navigate to Internet of
Things Peripherals and add the Yun shield.

IoT BUILDER

3

 Using an Arduino Yun baseboard is simpler but the Yun shield or ESP8266 tends to have
better wifi and allows you to couple to a Mega which has more program ROM.

Raspberry Pi 3

From the homepage select new flowchart project and specify Raspberry Pi 3 as the target.

 Raspberry PI Zero should work (but has not been tested) as it shares the same header
as the Raspberry Pi 3. Raspberry Pi 2 will definitely not work with Proteus.

LABCENTER ELECTRONICS LTD.

4

The procedure above is slightly different if you are planning to create a source code project
rather than a flowchart project as you will need to start with 'New Project' instead of 'New
Flowchart Project'.

About this Documentation
This manual is intended to cover the use of the IOT Builder module in Proteus. IOT Builder is an
add-on product to Visual Designer and so reference will be made throughout to Visual Designer
programming methods. These should be easily understood in context but is explained in the
Visual Designer Documentation.

It is also entirely possible to use IoT Builder as an add-on to Proteus VSM for Arduino. This is
discussed in More Details again in the Visual Designer help files or documentation.

Guided Tour

This topic covers in brief the various control sections of the front panel editor in IOT Builder. The
front panel editor is accessible from the project tree when one or more IOT Controls are
added to the current project.

IoT BUILDER

5

1. Project Tree / File structure
2. Control Properties
3. Editing Window
4. Output Window

The Project Tree

The project tree sits on the left hand side of the editor. In the context of IOT Builder it serves
four main purposes:

1) Switch between panel design and flowchart program.
2) Context menu command set for adding IOT controls to the front panel.
3) Drag and drop placement of controls on the front panel.
4) Configuration of controls from the property panel at the bottom.

The following short example illustrates these points.

Adding a button
 The following procedure uses an Arduino Yun target but the process is the same
regardless of target so you could also follow these steps with targets such as Raspberry
Pi.

Start a new flowchart project and select Arduino Yun as the target device.

Right click on the Yun in the Project Tree and select 'Add IOT control' from the context menu.

LABCENTER ELECTRONICS LTD.

6

Select a button from the resulting dialogue and then drag and drop it onto the front panel editor.

Left click to select the button and then edit it's properties from the property page at the bottom of
the project tree.

IoT BUILDER

7

The Editing Window

The drawing area for the front panel is determined by the target device (desktop browser, iPad,
iPhone, Galaxy S6, etc.). To set or change the target device:
1) Right click on IOT Panel in the Project Tree and select Panel Settings from the resulting
context menu.

 The IOT Panel becomes available in the project tree as soon as you add an IOT control
to your project. You can do this via the add IOT Control command on the Project Menu or
through the right click context menu.

2) Select the form factor on the left of the dialogue form and then the size and resolution for the
device on the right hand side. The values to be input here are the CSS width and height (CSS
Device Independant Pixels).

LABCENTER ELECTRONICS LTD.

8

 You can find a fairly exhaustive list on this website: https://www.mydevice.io/#compare-
devices

3) Close the dialogue form to resize your panel to the target device. Note that if you do this once
IOT controls have been placed and you go from a large device to a small device there may not
be enough space for all of the controls you have placed. It's best to choose your target device at
the beginning.

The Graphics Panel

The graphics panel on the left hand side contains a selection mode and then a series of
graphics and text primitives as described below:

After placing graphics, you can position or edit using the property page at the bottom of the
Project Tree. First enter selection mode, left click on the graphic and then edit in the property
panel.

https://www.mydevice.io/#compare-devices
https://www.mydevice.io/#compare-devices

IoT BUILDER

9

The most common use for this toolbar is to create some graphics and text for grouping other
controls together on your panel.

 Note that this text mode is for entering static text on the panel If you want to input text
commands on your device to send to your hardware then you need to add an IOTControl
such as text input or terminal.

The Colour Palette

The colour palette sits at the bottom of the front panel editor and dictates the default stroke and
fill colour of the next drawn graphic.

Stroke
The stroke is the 'pen' used to draw the graphic lines. It has a colour and a thickness. You can
change the colour of the stroke by double clicking on the existing colour and you can change
the thickness of the pen via the edit box at the side.

LABCENTER ELECTRONICS LTD.

10

Fill
The fill specifies whether the object is wireframe (not coloured in) or in which colour it should be
filled. You can change the fill by clicking on the desired colour from the palette to the right of the
existing fill colour.

Note that changes made here will affect the default for future graphic objects. If you want to
change the stroke/fill of an existing graphic you must first select it and then adjust via the
property page at the bottom of the project tree.

Zoom and Navigation

You can zoom in or out of the panel via the icons at the top of the application.

Alternatively, you can use the F6 key to zoom in, the F7 key to zoom back out and the F8 key to
return the zoom level to the default view.

IoT BUILDER

11

Grids and Snap

You can configure and turn on grids to aid placement and also snap the mouse cursor to the
current grid.

You can set up your grid by right clicking on the IOT Control Panel in Project Tree and selecting
Panel Settings from the context menu.

The setting at the bottom right allows you to specify a grid spacing and defaults to 10.

If you set this higher you will have less grid squares on your panel which means less snap
points. By contrast, if you set this lower you will have more freedom to position on the panel but
it might be harder to align objects precisely. We'd suggest that you leave this at default value
unless you know what you are doing.

Once configured you can turn grid and snap on or off via the icons at the top of the Panel Editor.

1

TUTORIAL 1: Blink an LED
Introduction

This tutorial is a short introduction to designing, developing and deploying a project with
IOTBuilder. We've made the appliance as simple as possible to concentrate on the workflow
from starting Proteus to controlling your Arduino Yun from your mobile phone.

This tutorial also assumes that you are familiar with flowchart programming with Visual
Designer. If not, we recommend that you work through the tutorials in the Visual Designer
reference manual linked below.

Terminology
We refer to the appliance as the hardware being designed. This is 'virtual hardware' on the
schematic during simulation and then physical hardware when deployed. In this tutorial, it is
therefore the Arduino Yun plus any sensors, shields or breakout boards wired to it.

We refer to the controller as the device sending commands to the appliance. In the context of
this tutorial this will be the front panel during the simulation and debug phase and the mobile
phone or tablet when deployed.

Design Process
The workflow from project start to working product involves several distinct steps as shown
below but the order is fairly flexible. We'll walk through the process in the following topics.

Creating an IoT product with Arduino Yun and IoT Builder.

LABCENTER ELECTRONICS LTD.

2

Project Setup

Launch the New Flowchart Wizard from the home page in Proteus, specify your name for the
project and the folder which you wish to save into.

On the next screen we need to create our flowchart project. This creates the firmware which we
will be using for the Arduino Yun controller in our connected appliance. This should look like the
following:

We'll get a configuration summary page and can can then finish to setup the project.

You should now have two tabs open, one for a schematic in which an Arduino Yun has been
placed and the second in Visual Designer in which the normal skeleton program constructs for
Arduino have been placed.

IoT BUILDER

3

Correct Setup Complete.

Design the Front Panel

The front panel is the control interface to our appliance. It needs to contain the elements we
need to send commands to the appliance and it contains the elements we need to display data
sent from the appliance.

Since this is our 'hello world' project, we are going to turn an LED on and off from a button
control on our front panel. We add internet of things controls either from the Project Menu in
Visual Designer or by right clicking on the Arduino Yun text on the project tree.

From the resulting dialogue form we need to choose a button and also a number of elements. In
our case we need only one button but you could choose to have several elements in a radio
button type situation. Select which theme you would like to use:

LABCENTER ELECTRONICS LTD.

4

In our case we will be using the Generic single Round button

There are two options depending on the number of buttons required on your controller. A Single
button (Push-Button Round/Square) or a set of button elements or a set number of buttons
(Radio-Buttons Round/Square). If you select Radio-Buttons option, the elements dropdown box
will be enabled for you to select the number of elements (buttons) required:

Our themes use what we call Auto Lamp which is a property of the push button control. When
this is set to True, it means that the light on the button will automatically come on when it's
clicked, no matter wether there is code associated to it or not. This is graphical / aesthetics only,
and nothing to do with the programming.

 Note the theme selector towards the top right of the dialogue. This allows you to style
your front panel in different themes such as retro, steampunk, modern, classic, etc.

After we add the button, notice that several changes have occurred in the Project Tree. We now
have an IoT Control (our button) at the bottom and also an IoT Panel and a couple more
resource files. Double click on the Panel in the project tree to open in the editing window:

IoT BUILDER

5

The Editing Window is now showing what will be the user interface for our appliance. By default,
it is set to a mobile phone size but you can change this by right clicking on the front panel in the
project tree and choosing the panel settings option from the context menu.

 You'll find a list of phone and tablet values here: https://www.mydevice.io/#compare-
devices. The width and height are the CSS Width and CSS Height in this table and the
DPI is the physical PPI divided by the pixel ratio. An iPhone 7 for example is therefore
375x667 and the DPI is 326/2 = 163.

Here we've changed to a Galaxy S7, the phone that we will be using as our controller:

https://www.mydevice.io/#compare-devices
https://www.mydevice.io/#compare-devices

LABCENTER ELECTRONICS LTD.

6

 While you can change from a desktop browser to a tablet or a phone at any time it is
really best to make a decision early on because any placed controls will not move if you
resize the panel. This means if you resize the panel downwards (e.g. tablet to mobile) it is
awkward to re-position all of the controls on the panel.

You can also change the background image. The default is a light grey box for simplification,
however you may want to upgrade this to something which matches your theme. Simply
download an image as a JPG or PNG file in to the Background folder and insert it using the Set
Background option:

You can also change the background image. The default is a light grey box for simplification,
however we have supplied several background images that match our themes. These are
stored in a background folder (C:\ProgramData\Labcenter Electronics\Proteus 8
Professional\VSM Studio\controls\Backgrounds\..). Alternatively you may want to upgrade this
to something which matches your theme. Simply download an image as a JPG, SVG or PNG
file in to the Background folder and insert it using the Set Background option.

To place our button on the panel simply drag and drop from the button entry on the project tree
to the panel.

IoT BUILDER

7

To rename the button right click on the item in the project tree and select rename peripheral
from the resulting context menu.

We can edit almost anything we need to with the button via the property panel underneath the
project tree. This shows all of the configuration properties available for the currently selected
object on the panel. If the button is not selected (does not have a dashed box around it) click left
on it once and then view the device properties.

The property section for a button is fairly self-explanatory, consisting of a geometry section for
accurate positioning and a configuration section. Here we can specify the type of button (single
click is fine) and change the label to something sensible.

LABCENTER ELECTRONICS LTD.

8

AutoLamp Property

You can set an autolamp property on the IoT button. If so, it becomes a toggling button by
default. However, if you turn autolamp off then you will need to use setLamp() on and off in the
flowchart - the benefit of this being that it is hardware appliance driven rather than implicit in the
GUI and therefore guaranteed to be correct. Alternatively if your program does not rely on an
LED light and the on off will be for graphical purposes only, set the AutoLamp on the button to
be on.

You can add title or graphics to the front panel directly from the primitives on the left hand pane.
For example, to add a title we would first select text mode and then place the text indicator in
approximately the right position on the panel.

After placement, we stretch the text box to the size we want.

Finally, we can change the font, colour and text content in the property page. In the left hand
pane, drop the Font option down and click on the colour.

IoT BUILDER

9

.

If you have Radio buttons and wish to resize them, Right click on the button > Transfer >
Restore Aspect Ratio. More information is explained in the Guided Tour section.

 If you require more than one front panel, you can add multiple tabs by right clicking on the
'Main Controls' in the project tree and select New Tab:

Writing the Program

Now that we have a front panel and a placed control we can look at how this is going to interact
with our appliance. Since the button is going to turn on an LED the first thing we need to do is to
add an LED (whichever colour you choose) to our schematic (remember, think of the schematic
as a virtual version of your hardware). We do this from the Add Project Clip command on the
Project Menu.

LABCENTER ELECTRONICS LTD.

10

This will both add the LED (Blue, Yellow, Green or Red) to the schematic and it will appear in
the project tree in Visual designer.

Now double click on the main flowchart page in the project tree to switch to the flowchart
program.

What we need to do in the program is respond to the press of a button and either turn the LED
on or turn the LED off. In Visual Designer we do this by creating an event that corresponds to
the button click. You can do this really quickly by dragging and dropping from the button in the
Project Tree as shown below.

IoT BUILDER

11

 This is a shortcut which adds an event and then specifies it to respond to a button press
interrupt.

What this means is that each time this particular button is pressed code execution will enter this
routine. What we do when this happens depends on whether our LED is currently on or off.
Drag and drop from the LED peripheral onto the flowchart and place the decision block in the
new event.

 This is actually quite a powerful shortcut. When you drag and drop from the actual
peripheral (rather than one of it's methods) you will get what we call the sensor function
for the peripheral. In the case of the LED this is a decision that splits on whether the LED
is on or off. You'll find more about sensor functions in the Visual Designer help file.

Now that we have a test for whether the LED is on or off all we need to do is turn it on when it is
off and off when it is on. Expand the LED in the project tree and then drag and drop the off and
on methods into the appropriate places.

LABCENTER ELECTRONICS LTD.

12

Finally, we'll need to place a couple of extra wires to connect up the ON state.

As a final touch, we'll add the front panel indicator when the led is on and off. This amounts
more drag and drop placement, this time of the setLamp method from the project tree as shown
below.

IoT BUILDER

13

That's actually it - five flowchart blocks to toggle an LED on an Arduino Yun from a mobile
phone! Next we'll look at how we can simulate and test.

Simulate and Test

As a quick test that we haven't made any mistakes we can press the play button to simulate the
system.

When the simulation is running on our virtual hardware we will end up with the front panel in the
main section of the screen and any active areas of electronics on the right hand side. We can
drag these out to suitable sizes - in our case to make the LED easily visible.

LABCENTER ELECTRONICS LTD.

14

All that remains is to press the button and then wait to see if the LED turns on and then press
the button again to turn the LED back off.

Let's assume however that something wasn't working and that we had to investigate. We'd start
by pressing the pause button to halt the simulation.

Next we'd set a breakpoint somewhere in our flowchart. In our example, let's do that at the
method call to turn the LED on.

Now we run the simulation and press the button on our panel. The simulation will pause
automatically when it hits our breakpoint.

IoT BUILDER

15

We can then use the step commands to single step debug our flowchart while watching it's
effect on the circuitry. In our trivial example a single step will turn the led on.

Another single step will illuminate the lamp indicator on our front panel

When we've finished simulation and we've confirmed everything is working as intended we can
proceed to deployment.

 This is of course as simple a test case as it's possible to get and there isn't a lot that can
be done in terms of debugging. You'll find more coverage in other tutorials and in the
Visual Designer reference documentation.

The App

The free IoT Controller app is the easiest way to get the front panel onto your mobile device.

 If you have Android device you can download the APP from Google Play. Search
for Proteus IOT Builder and click on install, It's free!

LABCENTER ELECTRONICS LTD.

16

 If you have an iOS device you can download the APP from Apple Store. Search for
Proteus IOT Builder and click on install, It's free!

The app serves as a host for the front panel you create and also helps with discovery. The
discovery is done by the Bonjour utility / Driver. This utility is present on many machines but you
can launch the installer directly from the Labcenter Program group on the Start Menu. Now that
you have the app you can control your running IoT builder simulation from your app as follows:

1. Make sure your mobile or tablet is on the same wifi network as your PC is on.
2. Start the running simulation in Proteus, then start the app on your phone.

3. The app will open and you will see the following:

4. Click on the menu option at the top left and select Discover Appliances. Find Virtual Front
Panel and select it with your finger.

IoT BUILDER

17

 To change the name of the panel, go to Panel Settings (right click on Main Controls in the
project tree) in Proteus and change the Page Title.

5. The Running simulation should automatically appear in the App:

6. A Message will appear in the Front panel in Proteus that says the following:

This is because it is now being displayed on the controller.

 Obviously this won't work if your computer doesn't have wifi or isn't on the same network
as the phone.

7. Press the button on your phone, the led will come on in the simulation and the indicator lamp
will light up on your phone app.

LABCENTER ELECTRONICS LTD.

18

Which results in the LED on the schematic turning on:

8. Stop the simulation and/or disconnect when you are finished. Closing the App on your
controller will not end the simulation on the PC, you will need to press the STOP button in
Visual Designer.

 More information is in the Mobile App help section The Mobile App

Programming

Now that we have the app and our mobile control center is working the final step is to program
the physical hardware with our firmware. We can do this either through wireless SSH if your
computer has wifi or through USB if not. The process is basically the same in either case. For
this example we will do this wirelessly.

 The Arduino Yun Shield (mounted on an Uno or Mega) cannot be programmed via USB
because the serial connection is already in use. The Yun board can be programmed
either via SSH or via USB.

1) Switch on the Yun by plugging the power supply in (if you are programming via USB make
sure it is plugged in, the USB cable to PC can act as both power and programming).

IoT BUILDER

19

2) After waiting for about 30 seconds for the YUN to boot, Set your PC and your controller to be
on the ARDUINO wireless network:

This will take you off the internet but you won't need it for this exercise.
3) Launch the project settings dialogue in Visual Designer.

4) If you are programming by WiFi select the YUNSSH programmer and the SSH interface.
Your Arduino Yun should be discovered automatically and shown in the host dropdown combo
box.

LABCENTER ELECTRONICS LTD.

20

 The default name of the Yun has the mac address appended at the end and you should
find this written on a sticker on the back of your board.

If you are programming by USB you need to select the LEODUDE programmer, the COM port
and the speed of the arduino. The YUN is 57600 by default.

Now click on the Firware icon to upload your program to the Yun:

 More on programming via wireless, USB and ethernet is explained here.

How does it work ?

If you are programming by SSH then the firmware and resources (webserver, front panel
graphics etc.) will arrive at the Atheros chip. This will automatically run AVRDUDE and program
the firmware onto the AVR processor via the ICP interface.

IoT BUILDER

21

By contrast, if you are programming via USB then the bootloader on the AVR will be used to
pass all of the resources across the data bridge to the Atheros chip and then AVRDUDE on the
PC will be used to program the firmware onto the AVR processor. This method can be
significantly slower if the front panel design is reasonably complex.

In either case, you will end up with firmware, webserver and front panel deployed as shown
below.

Flowchart program on AVR, webserver and front panel graphics on Atheros.

See Also:
 Programming the Hardware

Controlling the Hardware

Assuming that we have an LED wired on the real device to the same pin (IO10 in our case) and
that the Yun is powered on then the first step is simply to use our app to discover the real Yun in
the same way we did earlier for the simulated Yun.

LABCENTER ELECTRONICS LTD.

22

Now we can press the button on our phone and control the LED on the real hardware, exactly
as we did in simulation

That completes the basic tutorial and hopefully shows just how simple it is to get things working
with IoT Builder. For something a little more useful/realistic it is also well worth working through
the Temperature Logger tutorial.

1

TUTORIAL 2: LOGGING
THERMOMETER

Introduction

In this tutorial we will be setting up a logging thermometer application. Our front panel will
consist of a graph with some buttons to adjust the range of the display and a thermometer to
show the current temperature. On the hardware side we'll use the Arduino Yun and a grove
temperature sensor.

While relatively simple with IoT builder, this is still a bit more involved than our blinking LED
tutorial. To avoid information overload we won't go over the same basic techniques that we
covered in the first tutorial so it is worth either working through that one first or at least referring
to it where needed.

Front Panel Design

First, we'll create a new project with Arduino Yun and Visual Designer. This means that we will
be designing our program with flowchart blocks.

Our front panel for the logging thermometer is going to look like the screenshot below.

LABCENTER ELECTRONICS LTD.

2

Front Panel concept for a logging thermometer application

Control Picking
All of the constituent parts are added from the IoT controls library which we access either from
the Project Menu or by right clicking on the Arduino Yun in the Project Tree.

We want a mercury thermometer (-40 to 50 Celsius should be fine !) which can be found in the
Display Controls category, a line chart with time x-axis which is under the chart controls
category and then we need four buttons from the buttons category.
The buttons are worth further discussion because what we actually want is a group of buttons,
much like radio buttons, that correspond to minute, hour and day. These are mutually exclusive
- there will only be one selected at a given time - and so we can add them as a button group. To
this, select radio buttons (round) and then change the number of elements to three at the
bottom before adding to the project.

IoT BUILDER

3

The reset button by contrast is a normal, stand-alone button so we can select push-button and
add in the usual way.

 In the screenshot above and in our selections we've chosen to add everything in the
basic (generic) theme. You can of course change the theme from the top right and style
your front panel in a different way if you like.

Control Placement
Now that we've added everything we need into our project the next step is to lay out the controls
on the panel itself. Your project tree should look something like the following.

LABCENTER ELECTRONICS LTD.

4

Double click on the IoT Control Panel to open it in the Editor.

 Remember that it is best if you first configure the panel size according to your target
(iphone, nexus, galaxy, etc.) before you start placing controls. This is covered in the first
tutorial. The default panel size is fairly standard for a modern mobile phone in landscape
mode.

Drag and drop the thermometer onto the panel and position on the left hand side.

You might find that it is too big for the panel by default in which case simply use the drag
handles to resize and then pick it up and re-position as required.

IoT BUILDER

5

Repeat with the line chart and the reset button.

Now place the button group loosely on the panel - over the middle of the line chart is fine.

Switch to the property pane and find the element replication properties. Change the property
direction from left-right to top-bottom.

LABCENTER ELECTRONICS LTD.

6

Now resize the button group to fit and then re-position above the reset button.

Properties and Alignment
Unless you are very good at this, it's likely that your buttons are looking pretty ugly at this point.
They may well be 'squashed' in one dimension and the button group is probably not exactly the
same size as the reset button. That's to be expected at this stage and we'll adjust the sizing and
placement as we add labels in the property pane. Select the button group first and then drag up
the property pane so we more easily make changes.

IoT BUILDER

7

Scroll down to the configuration section and enter the labels as a comma separated list beside
the buttonLabels property.

We'll need to include a little bit of label spacing (between the button and the text) so set this to
10

Next, we need to set the separation between the buttons so look for the spacing property under
element replication and set this to 30. This is the distance from bottom of one button to top of
the next button.

The size of the buttons needs some adjustment, you can resize them by dragging one of the
corner nodes, or you can set the size manually. In this case we will set them to be width 60 and
the height (of all three buttons) to be 225.

LABCENTER ELECTRONICS LTD.

8

 Note that if you have the buttons out of shape, you can right click on the buttons >
Transform > Restore Aspect Ration

We need to move the button group into position manually or by adjusting the x and y values in
the geometry section.

Now, switch to our reset button, set the label to be Reset, the width and height to be 60 and the
x-value to be the same as the button group in order to align.

IoT BUILDER

9

You can align multiple objects by holding the CTRL key and clicking on the objects, then right
click > Align Hoz or Align Vert.

We could continue to align the line chart and the thermometer in a similar way. For example, if
we set them all to have the same y-value (e.g. -165) the top of all the elements will be perfectly
aligned.

Chart Configuration
The line chart is a very flexible control and has several configuration options. In our case, we
will changing many of these at run time (for example, we will be changing the time axis as the
user presses a button to adjust the historic range). However, there are a few aesthetic things we
can set up now. As normal, this is done via the property page once the control has been
selected.

LABCENTER ELECTRONICS LTD.

10

We can start by giving the chart a title and, since there will be but one dataset, we can remove
the legend.

The line width can be dropped down to single pixel and we can change the default background
colour to something more complementary to our panel.

Writing the Firmware (Flowchart)

Now that we have our front panel in reasonable shape it's time to think about our program.

 We will skim quite quickly over the basics of flowchart design in this section. Please refer
back to the Visual Designer help file (accessible via the Help menu in Visual Designer) if
you need more detailed coverage of anything.

Switch to the flowchart by double clicking on the main flowchart file in the project menu.

We need first of all to add the temperature sensor to our schematic (virtual hardware). We do
this in the usual way via the Add Peripheral command in the project menu and add in the grove
temperature sensor.

IoT BUILDER

11

Program Structure
Broadly speaking, our program is going to need both a setup phase and an operating phase
and it is going to have to respond to user input in the form of a button press. The button press
can either be a change in the history range for the chart (a press on one of the button group) or
it can be a press of the reset button. We already have flowchart constructs for the setup
phase (setup) and the operating phase (loop). We can respond to a button press with an event
in the flowchart and, as we've seen in the first tutorial, we can add this simply by dragging and
dropping from the IoT Control in the project tree onto the flowchart.

We need to do this both for the button group and for the individual (reset) button. With a little
movement of chart elements around our basic program structure should now look like the
following.

LABCENTER ELECTRONICS LTD.

12

Basic routines for our program

It's a good idea to edit and change the names of the two button handlers to something more
readable. For example, we can change to 'onbuttonGroup' and 'onResetButton'

Setup
The setup routine is where we do any initialization tasks before the program begins running
properly. Since we have a thermometer that will be showing the current temperature we will
need a variable into which we will store the temperature. Drag an assignment block onto the
setup routine, edit and create a new variable for curTemp. Assign the variable to zero and as
type FLOAT here.

IoT BUILDER

13

We also need to store our historical temperature data. For small data sets this can be done
automatically and will store as session data on the Atheros but for larger data sets you can
specify a filename and the data will then be stored to file, either on the Atheros or on the SD
Card. We specify a data file for logging by expanding the methods of the chart IoT Control and
then dragging and dropping the setDataFile method onto the flowchart.

 The log file for chart data points is by default stored in the VSM folder on the Atheros
(Linux) chip on the Yun. You can mount it on an SD card by prefixing the file name with a
path (e.g. /MMT/SDA1 for Yun shield or /MMT/SDB1 for Yun)

Edit the flowchart block and specify the filename.

The other thing we need to do before we start logging is to make sure that the timeserver is up
and running. We can do this by expanding the server peripheral and then using drag and drop
in the normal way to position on the flowchart. This method takes no parameters as it is
essentially a smart delay and will exit when the server tells it that the timeserver is active.

LABCENTER ELECTRONICS LTD.

14

The timeserver is part of the Linux OS running on the Atheros which queries the current time
from an internet server.

 The waitForTimeServer() method ensures that the time server is running and that we are
receiving valid time points before it returns. This means that if your physical Yun is not
connected to the internet (i.e. not receiving valid time) then this command will never exit
and your program will not work.

Your setup routine should now look something like the following

Setup routine for the logging thermometer.

Loop
Now that we have the initialization out of the way we need to think about what our running
program is actually going to do. We need to do three things in normal operation:

 Read the temperature
 Update the thermometer
 Write the chart data
 Check if the temperature has changed

The first of these is the easiest. Our thermometer is working in Celcius so we can simply drag
and drop the readCelcius method from the grove temperature sensor into the top of the loop
routine.

IoT BUILDER

15

 Farenheit or Celcius is a configurable parameter in the property panel in the IoT Builder
for the Thermometer. We could easily switch the thermometer into Farenheit and then
use the corresponding method on the grove temp sensor to read the value.

Note that a new float variable (tempC) is automatically created and assigned to reading it.

The reason we don't assign directly to the curTemp variable is time. Our loop routine is going to
execute extremely fast which means if we don't think about what we are doing three things will
happen.

1) Our log file will become enormous very quickly.
2) We'll be sending huge amounts of unnecessary traffic back to the controller front panel.
3) We'll be unresponsive to UI commands from the GUI because we are executing a tight

loop at full speed.

So, when do we need to update the front panel ? Clearly, when the temperature changes we
want an update so we'll add a test for temperature change. We can therefore add a decision to
the chart that checks whether the temperature difference is greater than half a degree since our
last logged temperature.

If the temperature has changed we need to assign the temperature reading (tempC) to our
temperature variable (curTemp) in order that our test is valid the next time we execute the loop
routine. Drag an assignment block next to the fabs decision block and set the following:

LABCENTER ELECTRONICS LTD.

16

Next, we need to update the thermometer on the front panel with the temperature. We can do
this by drag and drop of the setTemperature method of the thermometer IoT Control

Finally, we need to log the temperature change. In order to do this we need to know the current
time, otherwise we can't log a data point properly. We can get the time via the now() method
and store it into a new variable (tnow) using a standard assignment block.

 The now() method is simply a Visual Designer call on the timeserver that returns the time
in secs since the EPOC in local time. It therefore enables the AVR side not to worry about
time.

Now we can use the writeData method of the IoT Chart control to log the data point.

 The writeData() method will both log the data point to file and update the chart with the
current data point.

Now, if the temperature doesn't change we'll still want to log data points periodically. Let's say
we write every 30 seconds or so if the temperature stays the same. We can do this by adding a
simple test to the 'no' branch of our temperature check test. (again you will need to swap the
yes/no.)

IoT BUILDER

17

Connect up to the 'action branch', if the result of our time test is positive so that we log if 30
seconds or more has passed since our last log. This is what you should have so far:

The last thing we need to do is add a pause. This will slow down the execution of the loop
routine and allow time for pending UI commands such as a button press to trigger. It is
extremely important here that we add a WaitforRequests server method rather than a normal
delay method. A delay method is blocking and button presses etc will not be processed while
we are in a delay routine. By contrast a waitForRequests routine will yield to an interrupt such

LABCENTER ELECTRONICS LTD.

18

as a button press. To address problem (3) above and keep an IoT application responsive to the
GUI therefore you should always use waitForRequests as shown below.

Your loop routine should now look something like the following.

Main execution loop for the logging thermometer.

 Not considering execution time versus update time to the controller is a very common
mistake with this kind of program. Always remember that the loop routine will execute
very quickly and anything you log/display/store is not going to work nearly as fast.

IoT BUILDER

19

Button Group Event
We've now got our program logic set up so the next question is how do we respond to a UI
request from the controller. If we first consider the button group then we know that we'll be
arriving at the top of our onButtonGroup() routine whenever a button in the group is pressed.
So, we need to first determine which button it is and then set the chart x-axis to span one
minute, one hour or one day.

Start by dragging and dropping the getState method from the button group IoT control. Add an
integer variable called 'range' and assign the result to it.

 GetState() on a button group returns a zero based index according to the buttons position
in the group. The first button is index 0 (Seconds in our case), the second is 1 (Minute)
and the third is 2 (Hour). It is set up this way so that a button group can be extended as
much or as little as the user requires. For example, you can specify a 10 button group
and then test between 0 and 9 to determine which button has been pressed.

Now we have the state we need a test for each button state and we need to set the x-axis range
accordingly in each case. So, in the case of the seconds button we want to test for range=0.
drag a decision block on to the flowchart and add range=0 having swapped the Yes/No.

To set the x-axis to span one minute we are specifying a time range so drag and drop the
setTimeRange() method from the line chart IoT Control.

LABCENTER ELECTRONICS LTD.

20

The configuration is then to set the units to seconds and the range to 60 (60 secs = 1 minute).
We also want the range to be absolute as above. The time range specifies the amount of time
displayed, going backwards from the latest timepoint in the data.

If Absolute=FALSE then the time data is relative.

Now, we rinse and repeat with our test for the minute button press.

And finally for the hour range test.

The button group handler should look something like the following when you are finished.

IoT BUILDER

21

Reset Button Event
Our last job is to respond to a reset button push inside the onResetButton() routine again, the
IoT control for the line chart has the method we need so all we need do is drag and drop the
clearData method into the button handler.

Simple method for handling the reset event.

Since we are wiping the entire graph history at this point it may be better to prompt the user to
confirm the action before we do this. Fortunately, IOT Builder can provide a way to do this by

LABCENTER ELECTRONICS LTD.

22

using the AlertBox control. To use this control, first pick it from the text area of the IoT controls
dialogue

Unlike other controls this one doesn't need to be placed on the panel. We can switch directly to
the flowchart and drag the Alert control on to the flowchart and move to a required location:

 Now drag the 'confirm' method onto the reset button event handler.

Edit this and provide suitable text for the message.

IoT BUILDER

23

What we want to do here is clear the data because the user has confirmed that this is the action
they want.

Notes:

An alert box is a two stage process. First you have an alert method which pops up the box for
user input. Second you have an alertbox handler which is called if the user presses the OK
button.

The alertbox handler is called when user presses the OK button only !! The text of the alertbox
is irrelevant - if the user hits OK the event handler will be called and if they don't it won't be
called.

Certain types of alertbox (e.g. info) only have an OK button and so the event handler will always
be called. Others, such as confirm, give the user a cancel option. Note that, even in the case of
the confirm box you are not giving the user a binary choice because you cannot respond directly
to a cancel in your program - the alertbox handler is called only when the OK button is pressed.

 The call to the alert box handler returns immediately and program execution continues !
You need to therefore consider what code will be executing while the user is reading the
message and responding.

LABCENTER ELECTRONICS LTD.

24

Summary
That's everything we need for a IoT enabled logging thermometer in a single sheet of flowchart
program. There are some important principles and tips from this process that will apply to
almost all of your own projects which are summarized below.

 Your front panel actions (switches, buttons, sliders, etc.) are processed in the
flowchart as event routines. Drag and drop from the IoT Control onto the flowchart
to place the event routine and then add the required blocks inside it.

 Think about time when it comes to your loop routine. How quickly will it execute,
how quickly does it need to execute and is there time to respond to GUI commands.

 Always use waitForRequests() instead of a normal delay() if you want your program
to respond to UI events.

 If you are in doubt about how to drive a peripheral on the schematic look at it's
methods in the peripherals section of the project tree.

 If you are in doubt about how to do something with an IoT control look at it's
methods in the IoT controls section of the project tree.

Simulation

Now that we've worked through the front panel design and the programming we can give the
entire system a trial and see how it works. Start by pressing the play button to run the
simulation.

You should end up with the front panel in the main section of the window with the reset button
on the Yun at the top and our temperature sensor at the bottom. You can resize these windows
as required - in our case it would make sense to make the temp sensor larger so that we can
see the readout.

IoT BUILDER

25

You should notice that the time period on the x-axis matches the default in the button group and
that it actually showing the correct time.

 You should also notice that the graph time range advances every minute in real time.

Our first test is to increase the temperature on the temperature sensor by clicking on the
activation button and check whether the live display on the thermometer and our chart responds
accordingly.

Similarly, we can reduce the temperature on the temp sensor and check our display. We can
hold the mouse on the down button to move the temperature down rapidly and examine how
responsive our chart and thermometer are.

LABCENTER ELECTRONICS LTD.

26

 Compare how easy it is to bounds test a temp sensor compared to the real world (hair
dryer and fridge ?).

After a minute or so our data changes will be moving off the chart so we can change the range
to one hour and check that the time range is correct and that the data from our temperature
testing has been correctly stored.

Finally, we can reset the display and confirm that our data set is wiped by checking the chart
display.

IoT BUILDER

27

If you want to at this stage you can also check how the front panel looks and performs from your
mobile/tablet device. See the first tutorial

Debug

Let's look at a few different ways we can pause our program and single step to look closer at
our program flow if something has gone wrong. Press the pause button to halt the running
simulation and switch to the source code tab.

Set a breakpoint on the setTemperature() method in the loop routine.

Now run the simulation and change the temperature on the temp sensor.

LABCENTER ELECTRONICS LTD.

28

You should find that the program automatically halts and presents you with the source code
window with code execution at the breakpoint.

You can now single step your program using the icons at the top, or the keyboard shortcuts
shown in the debug menu.

IoT BUILDER

29

Finally, you can toggle the breakpoint off and stop the simulation when you are finished.

As well as debugging the flowchart it is also possible to debug at source code level. When the
simulation is stopped, right click on the Arduino Yun in the project tree and select the debug
generated source command from the context menu.

Pause the simulation and select the main.ino source file from the file selector at the top.

Set our breakpoint in the equivalent source code line, namely var_curTemp = var_tempC;

Run the simulation, wait a few seconds for the front panel to load and adjust the temperature
sensor. We should pause at our breakpoint and single step exactly as before.

 If you want to you can even single step at machine code level by using the disassembly
command on the right click context menu.

LABCENTER ELECTRONICS LTD.

30

Clear the breakpoint via the context menu command and stop the simulation when you are
done.

You can return to flowchart debugging by selecting the debug generated source command on
the project menu context menu again (it is a toggle).

Advanced Debugging
If you are more familiar with the AVR processor and/or the electronics on the schematic then
there are a couple of other useful ways to control the simulation. The first is to make use of the
watch window to control program flow. The first step is to pause the simulation and then open
the watch window from the debug menu.

In our case we want to look at the ADC results because the grove temp sensor is connected to
the ADC on the AVR. Right click on the watch window and select the add by name command
from the resulting context menu.

IoT BUILDER

31

Add both ADCH (high byte) and ADCL (low byte) to the watch window and then run the
simulation. Notice that, as you adjust the temperature on the sensor the value of ADCH will
increase. You can choose to set a breakpoint (called a watchpoint condition) on or above a
particular value. Right click on the ADCH line on the watch window and select watchpoint
condition from the resulting context menu.

Select on change and then run the simulation. The program will pause each time you change
the temperature.

If you really want to understand what is happening here you can switch to source code
debugging and repeat the experiment pressing F10 to step once you hit the breakpoint. You'll
actually find the ADC conversion code in the grove.h file for the temperature sensor (select from
the drop down at the top).

LABCENTER ELECTRONICS LTD.

32

 More information on the Watch Window can be found in the Proteus VSM Help file

You can even set a breakpoint to trigger on a hardware condition. For example, we can trigger
on a voltage change on the ADC input line. First, switch to the schematic, select a voltage probe
and drop it onto the line.

Next, edit the voltage probe and set the breakpoint to be an analogue breakpoint triggering at
3V with arm time of 1 second (to miss any initialisation noise).

IoT BUILDER

33

Press play and run the simulation. You should find that as you increase the temperature the
voltage across the probe increases and the breakpoint triggers around 35deg C.

 This last couple of debugging examples are of course a bit more involved that what we
have shown previously but it serves as an example that the full professional debugging
tools of Proteus VSM are available to you if need be.

Deployment

When we are satisfied with our system we can deploy to the real hardware exactly as discussed
in the first tutorial.

 See Also: Programming

LABCENTER ELECTRONICS LTD.

34

Here's a picture of the running hardware controlled from our mobile phone. We placed the temp
sensor beside the coffee cup for a little while to graph some changes.

1

SOURCE CODE PROJECTS
Introduction

For more advanced users, IoT Builder is a great product to work with in C++ source code
projects as well. Since the target hardware (the appliance) is Arduino you'll need to have a
product license for one of the following Proteus products to use source code projects:

 Visual Designer

 Proteus VSM for AVR

 Proteus VSM for Arduino AVR

 Proteus Platinum

You'll also need a license for the IoT Builder product unless you have Proteus Platinum which
includes everything.

The workflow is largely similar to that discussed in the Visual Designer tutorial linked below but
there are a couple of important differences which are covered in the topics below.

 See Also: Tutorial 1 : Blink an LED (Visual Designer Project)

New Project Wizard

When you are creating a source code project you start the New Project Wizard with the New
Project button.

The default options will suffice until the firmware page when we want to select the Create
Firmware Project option (not the Create Flowchart Project option). The target family is Arduino
and let's choose the controller as the Arduino Yun. The other important options is to make sure
that both the Create Quick Start Files and the Create Peripherals options are selected.

LABCENTER ELECTRONICS LTD.

2

 The Create Peripherals checkbox is vital here as it will allow you to choose from all of the
prepared shields and breakout boards and will initialize all of the Labcenter peripheral
drivers that work with them. If this box is unchecked you will not easily be able to use
IoTBuilder in your design.

Default settings for the rest of the New Project Wizard are then fine.

Once complete, you will end up with a source code project in VSM Studio which includes a
sizeable amount of pre-generated code. Those who work with MFC or similar will find this
familiar but the key thing is not to disturb, change or move the generated code. This is used by
the Labcenter drivers and will update as you add peripherals so needs to be managed by the
Proteus software. You should ignore this section of code and write your code inside the setup()
and loop() routines as normal.

On the schematic you will find a pre-placed Arduino Yun.

Design Phase

The design of the front panel is identical to that described in the Visual Designer tutorials. You
add IoT Controls via the right click context menu on the project tree.

It's always a good idea to immediately rename the button (right click on in in Project tree ->
rename command) to something that better reflects it's purpose

IoT BUILDER

3

You double click on the front panel to open the panel editor and then you drag and drop to
place.

You can also add hardware to your schematic directly from the Add Peripheral dialogue - again
on the right click context menu.

Now in the firmware to respond to the button press we need an event handler. Set the button
Mode properties in the Main Control to be 'Toggle'. Now, double click on the Main.ino file and
set the mouse caret in an empty space (after the void user_loop function) and then drag and
drop from the IoT button control onto the source code window. You should get a skeleton
control event function into which we can add our button processing code.

 Do not change the names of functions or you will break the program. The exception is
when you rename the control or peripheral after placing functions on the source window.
In this case you'll need to rename the objects and handler prefixes manually or drag and
drop them back out again.

LABCENTER ELECTRONICS LTD.

4

What we want to do is toggle the LED based on the state of the button. From the LED
peripheral drag and drop the set routine but this time hold the CTRL button down before you
drag. Move the mouse inside the button control event routine and then let go to insert at the
current mouse position.

Having dropped the set routine we need to add the boolean parameter depending on whether
we are turning the LED on or off. The simplest thing to do is to insert the getState() method of
the button which returns the bool that we want - again you can do this by deleting the word
'state' from inside the brackets and then drag and drop the getState() method from the IoT
Button control in the project tree.

Having not already set the autoLamp() method on the button itself, we can do this in the code.
Drag the setLamp() method below the above code and then again insert the getState() method
on to the brackets and set as follows:

This enables the lamp light to do the same as the LED indicating to the user whether the led is
on or off.

That's pretty much it. There are other things we could add but basically this will toggle the grove
LED on the Arduino Yun as you press the button on your controller (e.g. mobile phone). We
strongly recommend you review the tutorials as the simulation, debug and deployment phases
are all near identical to those for a flowchart program.
Summary:

 Don't change or move the generated code at the top of the file.

 If you drag and drop normally the code snippet will insert wherever the mouse caret is at
in the file.

 If you hold the CTRL button down while dragging then the mouse caret will move with the
drag and the code snippet will be inserted at the caret position when you release the
mouse.

1

PROGRAMMING THE HARDWARE
Overview

When the program has been written, the front panel designed and the system simulated and
tested the final step is to program the physical hardware. You can do this directly from inside
Proteus as discussed below.

Raspberry Pi 3

Raspberry Pi programming involves an initial, one time configuration phase and then a
programming procedure that you follow every time you want to change the firmware.

Configuration
The one-time configuration process is documented in full in the Visual Designer manual and a
short video tutorial is also available.

Programming
Once configured the actual act of programming is really simple and is documented in the Visual
Designer manual as per the link below

Arduino Yun via SSH

The Arduino Yún contains both an Atmel ATmega32u4 and an Atheros AR9331. Digital pins
Digital pins 0 and 1 are used for serial communication between the two processors. Your
program firmware will execute on the Atmel CPU while the Atheros processor (running Linux)
will host the webserver, front panel controls and associated IOT resources.

 It is important at this point to make sure that your Yun and your PC are on the same
wireless network. If this is a Yun 'straight out of the box' you and the Arduino is plugged in
to a power source, it will appear under your WiFi settings as "Arduino-Yun-XXXXXXX"
where XXXXXXX is the serial number of the Yun.

Configuration of the project for programming takes place from the project settings dialogue. First
launch the dialogue form either from the Build menu or from the icon at the top of the editor.

Next, set the programmer to be Yun SSH and the interface to be SSH.

https://s3.amazonaws.com/labcenter/movies/v8/rPiInitialSetup.mp4

LABCENTER ELECTRONICS LTD.

2

The default address, user and pass are pre-populated but will need changing if the configuration
of your device has been changed. If they have been changed you will need to type in the name
of the host (arduino.local.) in to a browser, enter in the password and change and then in the
settings set up the Arduino correctly.

After configuration, make sure the Yun device is switched on and is out of reset and then
program via the button at the top of the editor.

You will see progress updates in the output window as programming takes place - note that,
depending on the size of the resources involved, this could take a little time.

How does it work ?
When you press the program button the following actions take place:

1) The resources are transferred to the target path folder (/vsm by default) on the Atheros.
2) The firmware is transferred to the /tmp folder on the Atheros.
3) AVR-DUDE is invoked (on the Yun side) to program the firmware into the AVR. It does

this using the ICP interface (SPI).

IoT BUILDER

3

Arduino Yun via USB

Similarly to the SSH method or programming, configuration of the project takes place from the
project settings dialogue. First launch the dialogue form either from the Build menu or from the
icon at the top of the editor.

Set the programmer to be LEODUDE and the interface to be Arduino Yun.

At this point the only other fields available are the Port and the Speed. The port will be whatever
your PC creates for you. i.e. COM4. If there are more than one COM ports in the list, you can
find which one the Yun is using from the Windows Device Manager.

The port speed by default for the Yun is 57600 bps.

After configuration, make sure the Yun device is switched on and is out of reset and then
program via the button at the top of the editor.

LABCENTER ELECTRONICS LTD.

4

You will see progress updates in the output window as programming takes place - note that,
depending on the size of the resources involved, this could take a little time.

How does it work ?
When you press the program button the following actions take place:

1) The bootloader on the AVR will be used to pass all of the resources across the data
bridge to the Atheros chip.

2) Resources will be deposited in the target path folder (/vsm by default).
3) AVRDUDE on the PC will be invoked to program the firmware onto the AVR processor.

Computer / Network / Lab Setup

Depending on the features of your computer and/or the number of PC's and Yun boards in the
room It may be necessary to do some configuration.
1) If a PC has wi-fi then it can connect to the Yun directly via the procedure described above.
The MAC address for the Yun (normally found as a sticker on the shield/board) will be
appended as part of the device name allowing you to identify it.

IoT BUILDER

5

2) If the PC's do not have wi-fi then some configuration is going to be needed. We'd suggest
you have a wireless access point/router connected to the office/class LAN. Plug the Yun in to
the network and it will obtain a dynamic IP address from a DHCP server. After that, you should
be able to see the Yun hardware from the PC and program according to the procedure above.

3) Alternatively, you can cable the individual Yun boards to the PC's and program via USB as
described above. Assuming the Yun is in default configuration (Access point) then the phones /
tablets will connect to the real hardware after programming. You may end up with a lot of micro-
networks (mobile device and Yun) and people will have to check mac addresses to connect to
the correct Yun but it will work fine.

4) If all fails remember that you don't need each computer to program physical hardware.
Proteus VSM has complete simulation and debug of the electronics and the front panel so a
single programming station is both common and perhaps more practical.

 If you are using an Access point bear in mind that the wifi on the Yun baseboard is fairly
poor and, with a noisy network, the accessible range between the device and the access
point may be short. Our experience is that a Yun shield on an Uno board is better than a
Yun baseboard but see also note 3) above.

 Note that In some countries, it is prohibited to sell WiFi enabled devices without
government approval. While waiting for proper certification, some local distributors are
disabling WiFi functionality. Needless to say, this will prevent the programming of the Yun
via this method and also render is useless as an internet of things appliance. Check with
your dealer before purchasing a Yún if you believe you may live in such a country.

LABCENTER ELECTRONICS LTD.

6

Setting The Arduino Yun On To Your Network

1) Power the Yun with a USB cable
2) Plug an ethernet cable in from your router / network point
3) Open a web browser and type in its host: arduino.local.' (including the last full stop).

This will prompt you for a password
4) Enter the password: arduino or doghunter to enter the Arduino's settings
5) If the Arduino Configuration Wizard does not appear automatically, click on the Arduino

Applications icon

6) Go to the Utilities > Config Wizard

7) Click Next until you reach the Wireless settings page
8) Select your network from the list

9) The security will be automatically selected and you can enter in the password of your
Wireless connection as you would if you were connecting your phone to the same network.
10) Click next until you get the save option, and save. Your Arduino is now connected to your
network and will automatically connect to it when turned on.

1

THE MOBILE APP
Overview

In this day and age, most people have a SMART phone which runs an app / program. We have
design the Proteus IoT Builder App which is available in the Apples APP Store or Googles Play
store.

Download and Installation

Android App
On your Android phone, open Google Play and search for 'IoT Builder' and install

iOS App
On your iPhone phone, open your App Store and search for 'IoT Builder' and install.

 You need to have the Bonjour utility installed on your PC in order for the App to control
the running simulation. If it is not already installed you can install it directly from the
Labcenter Program Group on the Start Menu.

Discovery

There is one menu which is at the top left:

This will open the following menu:

LABCENTER ELECTRONICS LTD.

2

Click on 'Discover Appliances' and it will begin searching for any running Proteus simulation on
the same network. It uses Zeroconf/Bonjour (as supported by Android or IoS) to look for any
appliances (built with IoT Builder) on the local network. Both actual appliances and VSM
simulations announce themselves using Zeroconf so hence the app can find either.

When it locates a simulation, it will loads its panel on to the main screen. Select this to run and
control the simulation on your phone. To close the app, simply click the back button or your
home screen button.

 Note that this does not stop the simulation on the Hardware or the PC. This needs to be
done either by unplugging the Yun or stopping the simulation in Proteus.

 Contact Information and the App version number is found at the bottom of the menu
under 'Labcenter'.

1

ADVANCED PANEL DESIGN
 How a Virtual Front Panel Works

While IoT Builder contains quite powerful editing tools and a set of themes for different control
styles, you can if you want customize both the panel and the controls even further in a
dedicated graphics package. The virtual controls on the front panel are implemented using SVG
graphics elements controlled by Javascript classes. The root file (panel.htm) contains a
javascript framework which pulls in panel.svg, panel.js and controls.js from the server. The
entire of the front panel – even if it has multiple tabs – is held in a single SVG file – panel.svg.
The SVG format used in panel.svg is augmented with additional data that is stored under the
vfp namespace. However, for all this, the panel file is just a normal SVG file and can be edited
using an external SVG editor.

Using Inkscape to Edit the Panel

Although it is possible to use any general purpose SVG editor to edit your panel file, we would
strongly recommend that you use InkScape. It is free, and it is the tool we use internally to
create the controls themselves so we know that it works well.
There are several reasons why you might want to edit the panel externally:

 To add complex graphics such as gradients which are not supported by the built in editor.

 To reposition the controls using more sophisticated snapping tools and guidelines.

 To make minor changes to the appearance of the controls.

Assuming that you have created a file association between InkScape and SVG files, then
double clicking panel.svg under the resource section of the Project Tree will launch InkScape to
edit it.

LABCENTER ELECTRONICS LTD.

2

Double Click on the panel resource in Proteus to launch it in Inkscape.

However, before you do this, it’s important to understand that it possible to destroy your front
panel if you do the wrong things with the external editor. The key thing to avoid is disturbing the
group structure of the SVG file. Put simply, this means that in no circumstances must you
ungroup the controls. If you do that, you will need to re-place them manually inside Proteus.

When you first open the panel.svg file in InkScape, you’ll see that each tab of the panel is held
on a separate layer, these corresponding to top level groups in the SVG file structure. Note that
you may need to use the visibility flags in the Layers Dialog to show the other tabs.

Then, on each layer the controls will generally appear as second level groups, at least unless
you have used the grouping function in the build in editor. As long as you retain this basic
structure, the panel will reload back into Proteus in full working order.

IoT BUILDER

3

If you want to add extra graphics or text to the panel, you can just draw them using the
InkScape tools. If you place them on the background layer, they will appear on all the tabs,
otherwise they will appear on the tab corresponding to the layer that you place them on.
Basically, if you draw graphics on the the Main Controls layer, it will appear on the main panel in
Proteus. If you draw graphics on the Background layers, it will appear on all panels that are
added to the Proteus project.

On the other hand, if you want to make changes to elements within a control you can do this by
holding down ctrl whilst clicking on the element. This selects an individual element within the
group structure without the need to ungroup it first. You can then change stroke/fill styles, font
attributes and so on for that particular element.
As soon as you save the panel.svg file back from InkScape, Proteus will detect the change and
reload it automatically.

 Do NOT ungroup any of the IoT controls that are on the panel. If you do, the resulting
SVG will not work in Proteus.

Control Editing

Unlike editing of the panel, the editing of controls is quite involved and requires an
understanding of how the control is constructed. If you are interested in creating your own
controls then please e-mail us at support@labcenter.com and we can provide you with more
detailed technical information.

LABCENTER ELECTRONICS LTD.

4

Meanwhile, the following example shows how you can make a minor change to change the
iconography on the icon buttons.

Creating a Custom Icon Button
We'll assume at this point that we are in the IoT Builder editor and have added an icon button to
our panel. We've looked through the different icons and actually we want a happy face icon in
the button. This isn't here but we do have custom icon option so we can make our own
Open your editor and then navigate to the Controls directory (inside \ProgramData\Labcenter
Electronics\VSM Studio\ of your installation), select Pushbutton, then the theme you want and
finally open the SVG file for the icon button.

 You need to open the icon button, not the standard button. It will have icon in it's name.

Open the objects panel to view the root structure of the SVG file. Expand the structure tree for a
full view of groups and layers.

IoT BUILDER

5

 Do not ungroup any objects. If you do so the control will either not load in Proteus or not
work properly if it does.

 Hide any layers (i.e. Power) that are currently visible and unhide your Custom1 layer so
that any graphics that you add will appear.

Locate the Custom layer (1, 2 or 3) you wish to modify from the structure tree and expand it.
You will find two more groups inside this Custom group, the up and down states of the button.
Expand either the Up or Down group and add a new box, line, arc, Bezier etc. objects as
needed to create your icon. You can then copy these in to the other group and move
accordingly to match the first groups positioning. That way the button will appear stationary
when pressed. Multiple objects can be used but they must not be grouped together.

Here you can see the arrows pointing to the added graphics, with them selected on the right
hand side:

LABCENTER ELECTRONICS LTD.

6

Save the SVG as a new file. It is strongly recommended you create a new folder within the
control folder to store all of your custom SVG's. Doing so will mean all custom SVGs will show
as their own skin group when viewing in the IoT control panel. This skin group will get it's name
from the Folder name e.g Modern, Retro etc.

 Hide the Down state before exporting the SVG file otherwise your button will not appear
correctly in the IoT Control form:

 Any changes/new icons saved in the installation folders provided with Proteus will be
overwritten and updated with new releases of Proteus. Custom folders will remain intact.

1

IoT CONTROLS

BUTTONS

Introduction
The button is probably the most common and certainly one of the most versatile controls in the
IoT Control Library. This topic discusses the different types of button and various configuration
options but the basic process for adding a button is the same in all cases.

To add a button
1) Right click on the Arduino Yun in the project tree and select the Add IoT Control command
from the resulting context menu

2) Make sure the category selector shows buttons and choose your theme from the selector on
the right.

 The theme determines the available styles of buttons but not their functionality and lets
you create a modern looking GUI or a classic retro panel according to your preference.

LABCENTER ELECTRONICS LTD.

2

3) There may be three types of button, namely radio buttons, icon buttons and standard buttons.

 Radio buttons are a mutually exclusive option group which you can easily query to see
which option is selected. If you want radio buttons select the button type and the number
of elements and then click to add.

 Icon buttons are normal buttons pre-loaded with a selectable icon such as power, play,
stop, etc. If you want an icon button just click to select and then click the add button to
bring it into your project.

 Standard buttons are all of the other buttons and may come in different shapes and
styles. If you want a standard button follow the usual steps of click to select and then
add button to bring into your project.

Design Time Configuration

Configuration of the buttons can be done primarily at design time once the button is placed on
the panel. We'd suggest you first rename your button to suit it's purpose, then double click on
the Mains Control panel to show and finally drag and drop the button control onto the panel.

Renaming and placing a button

Select the button by left clicking on it and then view the properties in the property pane at the
bottom left of your editor.

Button properties

IoT BUILDER

3

The following properties are commonly available:
Geometry Properties (x, y, width, height)

These properties enable positioning and aligment. For example you could set a series of
controls to have the same x value to align them vertically, The width and height properties allow
for sizing of the control, although you may find it just as easy to use the 'restore aspect ratio'
command on the right click context menu for the control after sizing with the mouse.

Mode Property

There are three types of button:

 One-Click Mode: The button has a single state (clicked). Your event handler in the
firmware is called after the click is completed.

 Momentary Action: The button can be depressed and held down (the momentary action)
but will return to its default state on release. Your event handler in the firmware is called
when the button is depressed and again when it is released.

 Toggle: A binary button with two states (e.g. on and off) which are toggled on click. Your
event handler in the firmware is called whenever the button is clicked and you can use
the getState() method to query whether state is 1 or 0.

The choice of button mode depends on what you want to happen when you press the button. If
for example you have a reset button then you would have a one-click button because each time
you press that button you want to reset the app. If you want to turn the volume up you might use
a momentary action button which will respond while the button is depressed. If you want to
toggle something on and off then you want to use a toggle button because you can query the
state of the button at any time.

LABCENTER ELECTRONICS LTD.

4

autoLamp Property

The buttons all have a lamp indicator ring which can be illuminated when they are
pressed/active. This provides useful visual feedback on the UI device and can be automated via
this property. The behaviour of the autolamp property depends on the type of button chosen as
follows:

 One-Click Button: The lamp indicator will come on when the button is depressed and go
off when the button is released.

 Momentary Action Button: The lamp indicator will come on when the button is depressed
and go off when the button is released.

 Toggle Button: The lamp indicator will come on when the button is clicked and will stay on
until the button is clicked again.

It follows that using the autoLamp property makes the most sense when you have a toggle
button because the lamp indicator can automatically reflect an on and off state. The default
behaviour however is to have autolamp turned off because a more complete approach to setting
the lamp indicator is to do so explicitly in your program via the setLamp() method.

setLamp() method

The benefit of this is that it is the firmware running on the appliance that dictates the state of the
lamp which is then guaranteed correct. While it is very convenient to use the autolamp property
here be aware that it will work with no interaction with your appliance (i.e. entirely in the GUI).

IoT BUILDER

5

Icon Property (only available with Icon buttons !)

If you have chosen to use an icon button then you can specify which icon to use from a pre-
selected list or - with some effort - you can add a custom icon of your own.
To add a custom icon you will need to edit the SVG file natively. This is not a trivial operation
but the process is discussed in some detail here.
Label Configuration

These properties are all fairly self-explanatory, allowing you to enter label text, position the label
relative to the control and then control the spacing of the label from the control. You can also
choose from a small selection of font types and set font size, decorations and colours.
Lamp Colour

Specify the colour of the indicator lamp on the button. This is used when you execute the
setLamp() method in your program or if you set the autolamp property to be true.
Face Colour

Specify the colour of the button face, excluding the lamp indicator ring.

LABCENTER ELECTRONICS LTD.

6

Programming Methods

Having configured the buttons we still need to access them in our program. There are three
available methods (only two for radio buttons) which we can see by dropping the tree down a
level in the project tree.

All 3 possible methods

Depending on what product you have these methods can be dragged and dropped into your
flowchart program (as a method call block) or into your source code project (as a skeleton
function).
setState() Method

The setState() Method applies only to the toggle button type (because that is the only type that
has two states) and allows you to set a pre-defined state without executing an actual button
press. For example, if you had a logging button which you had set to be of type toggle (on and
off) then you might decide that the default behaviour should be to log data. In this case you
would use the setState() method in your setup routine so that your appliance was logging and
the first user press of the button served to disable logging.

 See Also: Mode Property

getState() Method

The getState() method again applies only to the toggle button and returns the current state of
the button as a boolean.
setLamp() Method

The setLamp() method serves to turn on or off the indicator lamp on the button. This is intended
for use when the autoLamp property is set to false and allows the firmware to control the
feedback to the user on the controller.

If instead you use the autoLamp property then you don't need to use this method at all but the
indicator on the users panel will simply toggle, irrespective of whether the button press
command is received and processed successfully.

IoT BUILDER

7

SWITCHES

Introduction
Depending on which theme you choose there are three possible types of switches:

 Simple two state switches (flick switches, toggle switches etc.)

 Slide switches (multi-state)

 Rotary switches (multi-state)

To add a switch
1) Right click on the Arduino Yun in the project tree and select the Add IoT Control command
from the resulting context menu

2) Make sure the category selector shows Switches and choose your theme from the selector
on the right.

3) Either double click on the switch to add it directly or click to select and then press the add
button to add it to the project.

LABCENTER ELECTRONICS LTD.

8

Design Time Configuration

The first thing to do is to rename the switch to reflect it's purpose in your design. You can do this
via the right click context menu.

To place the switch on your panel first open the panel editor by double clicking on the IoT 'Main
Control' Panel in Project Tree. Next, drag and drop the switch onto the panel and position as
required.

To configure the behaviour of the switch select it on the panel and then adjust the properties in
the property editor pane.

IoT BUILDER

9

Toggle Switch

The toggle switch has geometry configuration allowing to precisely size the control using width
and height fields and also to align with other controls by applying a common x or y value.

It also includes two labels which allows you to add descriptive text for both states of the switch
(e.g. on and off)

You can also change the orientation between vertical and horizontal and specify a spacing for
the labels from the control body.

 It is much better to set this property than to rotate the control because the text labels will
position themselves correctly when you adjust with the property.

Finally, you can configure the font size and font type for the text labels via the labelFont
properties.

LABCENTER ELECTRONICS LTD.

10

Rotary Switch

In addition to the properties for toggle switch the rotary switch contains additional configuration
for the multiple states:

The init property lets you set the state at which the dial should start, the numStates property
defines how many states the switch will have and the amin/amax properties define the angle
range for the dial. For the angles, consider straight up to be angle=0, left is negative and right is
positive. So for example amin=-90 and amax=90 uses the top half of the dial.

We also have some more aesthetic properties for specifying the length of the little ticks leading
out of the dial (tickLength), changing their colour (tickColour) and for disabling them altogether
(showTicks), along with the tickLabels property to change the text of the labels as a comma
separated list or choose to hide the labels (showLabels).

IoT BUILDER

11

Slide Switch

The slide switch is very similar to the rotary switch. It has the basic set of properties we saw in
the toggle switch, including the orientation property which allows us to set the bar either
vertically or horizontally. There are then a couple more properties related to label
positioning. You can choose to position to the right if vertical which will then be below if
horizontal or you can choose to position to the left if vertical which will position above when the
orientation is horizontal.

 The movement and positioning of the labels will work properly only if you change the
orientation of the control via this property. Rotating the control will not adjust the labels.

You can also choose to stagger the labels onto two rows which can make it much easier to
make text readable with horizontal orientation.

Programming Methods

The programming methods allow us to access and control the peripheral at run time. For the
switch there are only two methods, namely getState() and setState().

LABCENTER ELECTRONICS LTD.

12

getState() Method

Reads the value of the switch position as an integer value starting from 0. eg a toggle switch
has two states 0 and 1. A slide switch could have multiple in the format of 0,1,2,3..... with 0
being the bottom most state. A rotary switch has a 0 state on the location furthest in the
negative degree direction.
setState() Method

Programmatically changes the state of the switch and causes the control to move to indicate the
new condition.

DISPLAYS

Introduction
There are basically six types of display controls that you can select:

 Moving dial controls (e.g. panel meter, speedometer).

 7-Seg display control

 Mercury thermometer control

 Loading / Percentage bar.

 LED Strip

 Gauge

IoT BUILDER

13

To add a display control
1) Right click on the Arduino Yun in the project tree and select the Add IoT Control command
from the resulting context menu

2) Make sure the category selector shows Display Controls and choose your theme from the
selector on the right.

3) If you are adding a moving dial control or a thermometer you simply click to select and then
press the add button to add it to the project.

If you are adding a 7 segment display then you need to select the control, specify the number of
elements at the bottom and then add it to the project.

LABCENTER ELECTRONICS LTD.

14

Design Time Configuration
The first thing you should do is to rename the control to reflect it's purpose in your design. You
can do this via the right click context menu.

Common Properties

There are a number of common properties that can be configured regardless of the type of
display you have selected. First, we have the usual geometric options, allowing you to position
and align the control

IoT BUILDER

15

 It is often easier and quicker to resize the control with the mouse (drag the handles) and
then right click on the control in the panel and select transform -> restore aspect ratio
from the context menu.

We can change the label by using the label property or choose to hide it altogether by setting
the showLabels property to false.

Moving Dial Control Configuration

Depending on the theme you've chosen there may be a couple of different moving dial controls
such as panel meters or speedometer dials but the configuration options are the same.
Configuration of the number range is a matter of setting the min and max properties and then
the number of divisions between them. For example, if we set the range from 0 to 10 with
numDivs=5 we would increment by 2 in each division as shown below

The other aspect to the number range is the sub-divisions. Here you can set the number of sub-
divisions (numSubDivs) and the length of the indicator for each one (subtickLength). You can
also choose not to show the tick indicators at all via the showTicks property

LABCENTER ELECTRONICS LTD.

16

You can adjust both the colour and the font used in the number scale via the tickColour and
scaleFont properties

Finally, you can disable animation of the needle by setting animateNeedle to false. This adds a
touch of realism to the display when in use by factoring in some basic acceleration and
momentum effects.
Seven Segment Display Controls

This type of control includes configuration options for the elements and the for the lamp used to
illuminate the segments. You can choose (or change) the number of elements used in the
control as well as the spacing between them and the direction of reading.

IoT BUILDER

17

In terms of colour you can change the colour of the face, the colour of the lamp and also the
opacity of the lamp in both it's on and off state. The opacity is a value between 0 and 1 with 1
being fully illuminated and 0 being fully off.

Thermometer Control

The mercury thermometer display controls are trivial and, apart from geometric configuration,
have a single property to specify the units as either Celcius or Farenheit.

Loading Bar Control

This reads back a % value based on computational mathematics performed in the program
code. A value between 0 and 100 can be represented. In addition to the common properties the
following additional properties are available:

init - the starting value of the loading/progress bar
barColour - sets the colour of the indicator bar as it progresses
animateBar - decides whether to animate the bar progress or not

LED Bar (including WiFi, signal, battery indicators)

The following properties are unique to the LED bar type of display.

units

Decides whether bar lights up as percentage return or as a set number of
steps. If using a percentage return, the % value of each LED is worked out
from the total number on the strip. The LED will only turn on when the value
reaches mid point between two LED percentages. The only exception to this is

LABCENTER ELECTRONICS LTD.

18

the first LED which will always turn on as soon as it has a value assigned.

LEDonColour Sets the on colour of the LED

LEDoffColour Sets the off colour of the LED

Gauge

The gauge displays have the following additional properties:
tickDis - Sets the distance of the value ticks from the centre of the gauge
labelDis - Sets the distance of the step values from the indicator ticks
emptyColour - Sets the colour of the gauge when it is empty.
gaugeColour - Sets the colour as the gauge fills.

Programming Methods

The programming methods allow us to access and control the peripheral at run time. The
following methods are available in Visual Designer:

Segmented Display

clear - clears all display segments
setValue - allows you to set a numerical value to be printed to the display
setError - allows you to display 'E' error warning on all segments
print - allows you to set a numerical, boolean or string argument to display on segments
setBase - allows you to configure display for Decimal, Binary, Octal or Hex values
setPlaces - allows you to define the number of decimal places the display allows

Thermometer:
setTemperature - allows you to specify the temperature in a numeric value

Dial Controls:
setLabel - Allows you to set a name for the display. This will override any label name you
specify in the design properties when program is running

IoT BUILDER

19

setValue - Same as segmented display

Loading Bar, LED bar, Gauge:

setValue - As above

INDICATORS

Introduction
The indicators section includes LED's of various shapes and sizes for use in front panel design.
They all share the same property set.

To add an indicator
1) Right click on the Arduino Yun in the project tree and select the Add IoT Control command
from the resulting context menu

2) Make sure the category selector shows Indicator and choose your theme from the selector on
the right.

3) Either double click on the indicator to add it directly or click to select and then press the 'Add'
button to add it to the project.

LABCENTER ELECTRONICS LTD.

20

Design Time Configuration
Configuration of the buttons can be done primarily at design time once the indicator is placed on
the panel. We'd suggest you first rename the indicator to suit it's purpose, then double click on
the Mains Control panel to show and finally drag and drop the button control onto the panel.

Renaming and placing an indicator

Once placed, select the indicator by left clicking on it and then view the properties in the
property pane at the bottom left of your editor.

Indicator properties

The following properties are commonly available:

Geometry Properties (x, y, width, height)

These properties enable positioning and aligment. For example you could set a series of
controls to have the same x value to align them vertically, The width and height properties allow
for sizing of the control, although you may find it just as easy to use the 'restore aspect ratio'
command on the right click context menu for the control after sizing with the mouse.
Other Properties
ledColour - where available this allows you to set a custom colour for the lamp

IoT BUILDER

21

labelText - Allows you to set a text label to give meaning to the lamp, e.g. "On"
labelPosition - Allows you to determine where the label will show relative to the lamp, or not to
show it at all
labelSpacing - sets the distance of the label from the lamp
labelFont - allows you to customise the text style of the label

Programming Methods

The programming methods allow us to access and control the peripheral at run time. For an
indicator there is only one method in Visual Designer:

setValue - allows you to set the state of the lamp in boolean terms. True is on and False is off.

DIALS AND SLIDERS

Introduction
The IoT control library contains a library of both rotary and slider controls. This topic discusses
the configuration and runtime properties of these controls.

To add a dial/slider
1) Right click on the Arduino Yun in the project tree and select the Add IoT Control command
from the resulting context menu

2) Make sure the category selector shows dials/sliders and choose your theme from the selector
on the right.

LABCENTER ELECTRONICS LTD.

22

 The theme determines the available styles but not their functionality and lets you create a
modern looking GUI or a classic retro panel according to your preference.

Design Time Configuration

Configuration of the controls can be done primarily at design time once they have been placed
on the panel. We'd suggest you first rename your control to suit it's purpose, then double click
on the Mains Control panel to show and finally drag and drop onto the panel.

Renaming and placing a dial

Select by left clicking on it and then view the properties in the property pane at the bottom left of
your editor.

IoT BUILDER

23

Dial Properties

 If you want a text label on a dial or slider to give it a name, this must be done by adding a
text element to your front panel.

The geometric properties are available regardless of which type of dial or slider you choose:
Geometry Properties (x, y, width, height)

These properties enable positioning and alignment. For example you could set a series of
controls to have the same x value to align them vertically, The width and height properties allow
for sizing of the control, although you may find it just as easy to use the 'restore aspect ratio'
command on the right click context menu for the control after sizing with the mouse.

Dial Controls

init - sets the initial values of the dial

min, max - sets the range of numerical values for the dial

numDivs, numSubDivs - sets the number of intervals along the range of the dial.

tickLength, subTickLength - sets the size of the individual ticks

amin, amax - sets the distance, in degrees, how far round the dial the labels are placed. Top of
the dial is at 0 degrees, with the positive being a clockwise direction

showTicks, showLabels - toggle the visibility of the ticks and labels around the edge of the dial

snapToTicks - Snaps the dial to the closest sub tick or full tick to give precise control of the
movement. This can be set to on or off, and is On by default.

LABCENTER ELECTRONICS LTD.

24

fadeOut - sets whether the read out of the dial position stays constantly visible or fades out
after a short display following a change in dial position

tickColour, valueFont, labelFont - customise the colour, font and size of the labels and ticks
on the dial

Slider Controls

Mainly the same as the dial controls with a couple of extra positional options:

orientation - allows to flip between horizontal and vertical. Recommended over a rotate
transform as labels and values will rotate and reposition accordingly.

valuePosition, labelPosition - determine where the values and label will be positioned relative
to the position/orientation of the slider.

Programming Methods

The programming methods are the primary means by which you can interact with the control in
your firmware program. For dials and sliders we have two exposed methods in Visual Designer.

setValue - allows you to set the value for the dial or slider via the program rather than manually

getValue - reads the value of the dial or slider at its current position.

IoT BUILDER

25

ALERTS

Using Alert Boxes
An alert control is one which can present a message box to the user with information and a
request to confirm. Unlike all other control it does not need to be placed on the front panel itself
but it does still need to be picked into the project. As always this is done from the add IoT
control command on the Project menu or via the right click context menu in the project tree.

Adding an Alert box.

The basic procedure for using an alert control is:

1) Add it to your project as shown above.
2) Drag the method for the type of alert you want into the appropriate place in your code

and type your message.
3) Drag out an event, set the trigger to be the alert and then respond to the users mouse

click inside the event.

 You'll find more information on events in the IoT Builder help file and event triggers are
also discussed in some detail in the Clocks and Timers topic.

LABCENTER ELECTRONICS LTD.

26

Using a confirm messagebox to present info to the user and then clearing the chart data when

the user confirms.

The code above will present a message box to the user in the remote user interface
(phone/tablet/browser) when executed as shown below:

 You'll find a good example of this in the temperature logging sample design which you
can launch from the Open Sample button on the Proteus homepage.

IoT BUILDER

27

Design Time Properties and Programming Methods
There are no design time configuration properties for an alert box and the four types of alert
boxes are self-explanatory. It's important to be aware that program execution continues while an
alert box is up and that your trigger event is only called when a positive user input is detected.

TEXT BOXES AND TERMINALS

Introduction
IoT Builder includes support for various text entry controls. The simplest is a single line text box
but you can also have a multiline teletype terminal or a text logger. Regardless of your choice
you add the control in the usual way, namely:

1) Select Add IoT control from the Project Menu (or the right click context menu on the
project tree).

2) Select the text controls category from the resulting context menu.
3) Choose your control and click add to insert into the project.

LABCENTER ELECTRONICS LTD.

28

Text Input Control

Design Time Properties
Geometry: - Standard geometric properties for sizing and positioning.
readOnly: False allows entered text to be fed back in to the program as a string. True
prevents text being entered, good for a notification box.
placeHolder - text to display in the box to prompt the user on the desired input.
maxLength - maximum length of the string allowed to be entered.

Programming Methods
setText: allows the text to be entered into the box which the program can either accept or
wait for the user to edit.
getText: reads the string value of the text entered in to the box
clear: removes any entered text from the display, returning it to the place holder value
setError: set an error message in red under the textbox - ideal if a value entered does not meet
the required format/length etc of the program

Teletype Terminal Control

Design Time Properties
Geometry: Standard geometric properties for sizing and positioning.
textFont: Sets the font family/size/colour etc for the text printed on the display
placeHolder: text to text to display in the box to prompt the user on the desired input.
maxLength: maximum length of the string allowed to be entered.
clsCmd: instruction required to clear the screen of any previous text.

Programming Methods
print: Print the specified value to the screen. Repeated calls will start printing where the last
string finished (i.e. on the same line where possible)
println: Print the required value to the screen on a new line
setBase: Set the unit base for printing interger vlaues (Decimal, Binary, Octal,Hex)
setPlaces: Set how many decimal places are allowed when printing our floating point values
setPrompt:Allows you to set a string as a prompt for text entry - this overwrites the place
holder.
getCommand: returns the value in the command variable, or an empty string if nothing is set.
cls: Clears the terminal screen

IoT BUILDER

29

Text Log Control

Design Time Properties
textFont: set the font to be used when writing to the display
warnColour: sets the colour for any warning text written
errorColour: sets the colour for any error text written
backgroundColour: sets the background colour of the display

Programming Methods
setFile: set the file name for the data to be stored to
setBase: set the unit base for printing interger vlaues (Decimal, Binary, Octal, Hex)
setPlaces: set how many decimal places are allowed when printing our floating point
values
info: write a normal log message to the screen
warning: Set an warning text to be displayed on the screen
error: Set an error text to be displayed on the screen
clear: Clears the screen

1

ADVANCED CONTROLS

CLOCKS AND TIMERS

Introduction
There are a range of clocks and timer peripherals that can be added to your front panel to allow
you to work with time in your application. As always, these can be picked from the 'Add IoT
Control' command on the project menu.

Adding clocks or timers in the generic skin.

LABCENTER ELECTRONICS LTD.

2

Understanding Time

Regardless of whether you are working with a clock or a timer It is really important to
understand how your appliance and your GUI acquire time.

Getting / Setting Time
There are two methods to set the time.
1) Linux Time server
You call the waitForTimeServer() method from the server methods in your code - normally first
thing in the setup() routine. This will cause the AVR to query the Atheros chip (running Linux)
and will return the time.

 You then use the now() method in the expression editor to assign the current time to the clock
or timer. This is shown below.

IoT BUILDER

3

 Note in this method your appliance itself is aware of the time.

2) Browser time

The alternative is to automatically retrieve the time from the browser which will then apply the
time to the GUI control. This is done at design time via the property panel.

 If you use the browser time your appliance doesn't necessarily know the time. The first
method is safer because your hardware is directly driving the GUI.

Time Events
Each time the time is set you get a set event which you can use to perform action in your
program. Amongst other things this would allow you to pass the time to your appliance if you
use the browser time method of acquiring time (although note your appliance will still have no
idea of time until the browser is live or the app is opened !!!)

LABCENTER ELECTRONICS LTD.

4

You can respond to a set event by dragging out the event handler and then adding the trigger
as the time set.

You'll notice that the other event trigger that you can set is an alarm trigger. If you set an event
with an alarm trigger it will be called every time an alarm goes off.

 You can see all of this in action in the sample design for the alarm clock which you'll find
by clicking on the open sample button on the Proteus home page and then typiing 'alarm'
in the search box. The sample you want is the 'IoT Alarm Clock'

Clock Properties

Design Time Properties
Geometry - Set position and size of control
label - Title to display on clock face
labelFont - Set font colour, style etc
useBrowserTime - true/false - user browser time instead of time server for display See
explanation of different methods to acquire time detailed above.

segColour (digital clocks only) - set digit segment colours
showPM (analog clocks only) - true/false - show or hide the PM indicator

Programming Methods
setTimeMode - allows the user to enter a time on the clock face itself. If passed with parameter
0 the user is setting the clock time and if passed with parameter value 1 through 8 the user is
setting an alarm time. So, setTimeMode(0) sets the clock time, setTimeMode(1) sets the time
for alarm 1, setTimeMode(2) sets the time for alarm 2 and so on. This can be seen in the alarm
clock sample design.

IoT BUILDER

5

The setTimeMode() method is called when the button is pressed to enable the user to type in a

time which will either be an alarm or the clock time itself.

cancelMode - cancel the user entry of the time as entered with the setTimeMode method.
setTime - Set the time of the clock to a specified value (typically now() for real time). read in
seconds from midnight 1st January 1970.
getTime - reads the current time of the clock
setAlarm - set the time, in hours and minutes, for each of the alarms
enableAlarm - turns alarm functions on or off for each of the clocks alarms
getAlarm - reads the alarm time

Timer Properties

 Please refer to the sample design 'Countdown Timer' for a working example. You'll find
this via the Open Sample button on the Proteus Home Page.

Design Time Properties
Geometry: The usual geometry properties enable accurate positioning and sizing for the
control.
label: Specify the label for the control that indicates it's function.
dir: Specify the direction of counting for the timer. This defaults to down so a ten second period
would result in the timer starting at 10 and counting down to 0. Direction set to up would be the
opposite and would start at 0 and count up to 10.
mode: Oneshot mode represents a single timer (unless you stop->restart in code) whereas
repeat mode gives you a way to receive periodic callbacks to the timer trigger event in your
code.

LABCENTER ELECTRONICS LTD.

6

period: The three period controls let you set the number of hours, minutes and seconds for the
timer period. You can also do this in code if you need to change or set at run time.
enableAlarm: this provides a way to disable the alarm when the timer condition is met. Can
also be set/unset in code to handle programmatically.
segColour: set the colour of the segments in the display.

Programming Methods
start() : This starts the timer count.
stop(): The stops the timer count
restart(): This will restart the timer count.
setPeriod(): set the length of time to elapse before the alarm goes off.
enableAlarm(): turn the alarm on or off. If enableAlarm is set to FALSE then the alarm will not
trigger and you will not receive an alarm trigger event call. By default, the timer alarm is
enabled.
getTime(): Gets the time from the clock.

IoT BUILDER

7

LINE CHART

Introduction
The line chart is a control which allows you to log and store data. You can select either a
numerical or a time based line chart in the usual way:

1) Select Add IoT control from the Project Menu (or the right click context menu on the
project tree).

2) Select the chart controls category from the resulting context menu.
3) Choose your control and click add to insert into the project.

If you choose to have the x-axis as time it is essential that you use the waitForTimeServer()
server method in your setup routine so that your appliance actually knows the time. This is
discussed in more detail in the topic on clocks and timers.

 You'll also find a good working example of the line chart in the temperature logger sample
design. You can open this from the Open Sample button on the Proteus home page. In
particular, note how the x-axis (time) can be adjusted in code and the chart view updates
dynamically.

Design Time Properties

titleText: This property simply lets you set the title for the line chart.
FontSizes: This simply lets you change the size of the fonts on the chart control.
showLegend: This will show or hide the colour key. Without this it becomes hard to tell the
difference between lines however it will also take up less space.
pointRadius: This simply allows you to change the size of the different points on the chart.
Setting this to 0 will remove the points entirely just leaving the line.

LABCENTER ELECTRONICS LTD.

8

lineWidth: This allows you to change the thickness of the line. Setting this to 0 will hide the line
and leave only the points on the chart.
backgroundColour: This will allow you to set the background colour for the selected chart.
timeRange: This property will set the x axis allowing you to display time. This is only available
on the time-based line chart. The unit will set what the chart will display in and the range will set
how much is shown. If absolute is true the histogram will work off the current time, so if you start
it a 1:00 it will also begin at 1:00. If Absolute is false, then it will start at time 00:00 and will
increment from there.
Column settings: numColumns simply sets the number of columns available. Then you can go
to the individual column settings and change their name, which side the axis is displayed on,
colour and range on the y axis.

Programming Methods

setXRange: This allows the user to set the x range, this only works on the numeric line chart
control however is available on both.
setTimeRange: Using this you can set the x axis to a time. Unit will determine which time unit is
used, then range will determine how many of those units are displayed. If absolute is true the
histogram will work off the current time, so if you start it a 1:00 it will also begin at 1:00. If
Absolute is false, then it will start at time 00:00 and will increment from there.
setYRange: This will allow you to set the y range on either side of the chart. However if the
value provided goes over the designated max or below the designated min then the chart will
automatically adjust.
showColumn: This will allow you to show or hide lines. You cannot show a line which isn’t set
within the properties.
setDataFile: setDataFile allows you to set which file the graph will read and write to. This is set
by entering the file name as a string.
setPlaces: This will set the number of decimal places the histogram will work too.
writeData: Write data will allow you to write a data point to the chart, this will not only update
the chart but also store that data in a file if you have linked it.
clearData: This will clear all the data from the chart and delete the data file linked to it.

IoT BUILDER

9

BAR CHART

Introduction
The bar chart is a data collection and storage control allowing you to set multiple pieces of data
and then store them inside multiple files. Files can then be loaded in and displayed next to one
another allowing for the comparison of the data. The data files cannot be accessed directly and
you must use the read and write commands to interact. You can easily control the colour and
labels to make the bar chart stand out.

Example of a single series barchart

Design Time Configuration

numCategories

This Property allows you to set the number of categories. A category is a collection of data for
one subject. Categories don’t interact unless told to and each Category will contain data from
different times.
categorySet

This allows you to set the names of the different categories making it easier to see which is
which.

LABCENTER ELECTRONICS LTD.

10

numSeries

This will set the number of Series. A series is a set of data within a Category. It is important to
understand that there is difference in behaviour between series0 and all the other series.
series0 is held in memory and can be manipulated programmatically via method calls such as
setData(). In order to preserve resources all other series are stored in files and can only be
manipulated via the writeSeries() and loadSeries() method calls. So, when you have multiple
series in your chart your program will become quite a bit more complicated as you will need to
switch data into other series to populate the chart.
setSeries

This allows you to set the colour of each series and the labels which correspond.
titleText

Simply a string to be used as a title
titleFont,scaleFontSize,labelFontSize

Simple properties allowing you to change the size of the text.
showLegend

This allows you to show and hide the Series keys.
minY and minX

This allows you to set the limits of each axis. The graph will however auto adjust if the values go
over.

Programming Methods

showSeries

This method allows you to show and hide series. This is useful when displaying different
amounts of data. You cannot create series here and the number of series must be set in the
design time properties before you can reveal them using this method.
setYrange

This simply allows you to control the Y-range from your program
setData

setData() allows you to set any value to series 0 of a user set category. Note that you can only
manipulate series0 with this method. With multiple series you would typically:
- manipulate series0
- writeData() to save series0
-loadData() to load series0 into series1 for example.
-resetSeries() and then manipulate series0 again.

 Only series0 can be manipulated in memory. This preserves resources on the 8-bit AVR.

incrementData

This allows you to increase the 0 series on any category by a set value.

IoT BUILDER

11

decrementData

The reverse of incrementData will remove a set value from the 0 series of any category.
resetSeries

This allows you to reset the data on an individual series. It will apply to all categories.
writeSeries

This will write all the 0 series to a file which you set by inputting a string. This will also overwrite
a file if you use the same file name twice allowing you to re-use files.
loadSeries

This is the next step of writeSerise and allows you to read data from a file and apply it to a
series. Most basic example would be you have read data from series 0 and then wiped it. You
can then apply that read data to the next series along series 1.
clearData

clearData will simply clear all the data files and wipe the graphic.

LABCENTER ELECTRONICS LTD.

12

HISTOGRAM

Introduction
The Histogram is a chart control that allows you to display and store data. It may look more like
the bar chart but it behaves more like the line chart with the user setting an x value opposed to
a category.

To add a histogram control:
1) Select 'Add IoT Control' from the Project Menu.
2) Select the Charts Category.
3) Choose either the numeric or the time based version of the control.
4) Click Add to insert into the project.

Adding a histogram control.

The control can then be dragged and dropped from the project tree into the virtual front panel in
the normal way.

Design Time Properties
Title: Simply allows you to set the title for the histogram.
titleFontSize, labelFontSize and scaleFontSize: Simply allows you to change the font sizes
for all the ladled areas.
Background and Bar Colour: Allows the user to set the colours of the background and bars.

IoT BUILDER

13

X and Y range: Allows you to set the min and max ranges on the x and y axis, the min can be a
negative or 0. The x range property will also allow you to set the number of bars displayed on
the histogram.
timeRange (Time histogram only) :The time range allows you to set the range of time shown
by the histogram. You can also set the number of bars displayed by the histogram. If absolute is
true the histogram will work off the current time, so if you start it a 1:00 it will also begin at 1:00.
If Absolute is false then it will start at time 00:00 and will increment from there.

Programming Methods
setXrange : setXrange allows you to set the range on the x axis allowing you expand or
decrease it and set the number of bars.
setTimeRange (To be used on time histogram only) :This allows you to set the range of time
displayed on the x axis. This will not only allow you to set the number of bars available but also
set the range of time displayed. If absolute is true the histogram will work off the current time, so
if you start it a 1:00 it will also begin at 1:00. If Absolute is false then it will start at time 00:00
and will increment from there.
setYrange :This allows you to set the range of the y axis. However, if the data is larger than the
y axis the histogram will automatically adjust and set to the correct range.
showColumn: This allows you to show or hide individual bars on the histogram and therefore
filtering your data.
setDataFile:setDataFile allows you to set which file the graph will read and write to. This is set
by entering the file name as a string.
setPlaces:This will set the number of decimal places the histogram will work too.
writeData:This will write a line of data to the graph. In addition, if a data file is set it will also
write that data to the data file and increment on top of existing data.

When using a time-based histogram use this configuration.

 You'll find more information about time methods like now() in the topic on clocks and
timers

clearData: This will clear all data from the histogram and corresponding data file.

LABCENTER ELECTRONICS LTD.

14

WIND ROSE CONTROL

Introduction
The wind rose is a specialised chart control which has been designed to show data about wind
speed and direction.

 Please refer to the weather station sample design for a working example on how to use
and configure the wind rose

Design Time Configuration
Calm and Petal/Band Properties

The wind rose uses petals to show the direction and wind speed. Because calm wind has no
direction it is shown as a circle in the centre. Each wind speed is given a different colour with
the top speed at the far end of the petal and the low wind speed at the centre. You as the user
can customise the colour of each petal by editing its “band” and the corresponding key will also
change. You can also change the label of each band key allowing you to change it from storm
to 20m/s if that’s how your software stores the data.

Due the fact not all black text can be seen on a colour you have the option to change the text
colour on each key individually. This property is also in the band property group.

IoT BUILDER

15

Time Properties

The time range property controls how much data is shown by the chart. In this example it will
show 24 hours’ worth of data. The unit has 4-options minute, hour, day or month which are the
unit. Then simply put the number of units you would like to show.

Colour and Font Properties

These properties are simple aesthetics controlling the font and colour of the text and the colour
of the background.

LABCENTER ELECTRONICS LTD.

16

Filename Property

File name will simply create a storage file with that name for your data. You cannot see or
access that file directly but by changing it you can be running multiple different files for different
wind roses.

Bands Property

Here you can set which band a certain speed will enter. The example here 0-4 mph will be
calm, 5-13mph will be band one and so on. This property will always need 5 numbers and
cannot operate with any more or less.

IoT BUILDER

17

Programming Methods

 Often the best way to see how something works is to look at an example. The weather
station example (accessed via open sample button on home page) makes use of the
wind rose and is well worth reviewing before starting your own project.

SetTimeRange - The set time range allows you to set the
StoreReading - Store reading will store the direction and band into a temporary array. The data
will not enter the main data file until storeRecord is used.
StoreRecord - storeRecord will transfer all data from the temporary array into the main data file
and give it a time stamp.
clearData - clearData will clear the entire data file leaving no data to display.
reload - Reload simply updates the graphic.

	COPYRIGHT NOTICE
	TABLE OF CONTENTS
	IoT BUILDER TUTORIAL
	What is IOTBuilder?
	IOTBuilder Targets
	About this Documentation

	Guided Tour
	The Project Tree
	Adding a button

	The Editing Window
	The Graphics Panel
	The Colour Palette
	Stroke
	Fill

	Zoom and Navigation
	Grids and Snap

	TUTORIAL 1: Blink an LED
	Introduction
	Terminology
	Design Process

	Project Setup
	Design the Front Panel
	AutoLamp Property

	Writing the Program
	Simulate and Test
	The App
	Programming
	Controlling the Hardware

	TUTORIAL 2: LOGGING THERMOMETER
	Introduction
	Front Panel Design
	Control Picking
	Control Placement
	Properties and Alignment
	Chart Configuration

	Writing the Firmware (Flowchart)
	Program Structure
	Setup
	Loop
	Button Group Event
	Reset Button Event
	Summary

	Simulation
	Debug
	Advanced Debugging

	Deployment

	SOURCE CODE PROJECTS
	Introduction
	New Project Wizard
	Design Phase

	PROGRAMMING THE HARDWARE
	Overview
	Raspberry Pi 3
	Configuration
	Programming

	Arduino Yun via SSH
	How does it work ?

	Arduino Yun via USB
	How does it work ?

	Computer / Network / Lab Setup
	Setting The Arduino Yun On To Your Network

	THE MOBILE APP
	Overview
	Download and Installation
	Android App
	iOS App

	Discovery

	ADVANCED PANEL DESIGN
	 How a Virtual Front Panel Works
	Using Inkscape to Edit the Panel
	Control Editing
	Creating a Custom Icon Button

	IoT CONTROLS
	BUTTONS
	Introduction
	To add a button

	Design Time Configuration
	Programming Methods
	SWITCHES
	Introduction
	To add a switch

	Design Time Configuration
	Programming Methods
	DISPLAYS
	Introduction
	To add a display control

	Design Time Configuration

	Programming Methods
	INDICATORS
	Introduction
	To add an indicator

	Design Time Configuration

	Programming Methods
	DIALS AND SLIDERS
	Introduction
	To add a dial/slider

	Design Time Configuration
	Programming Methods
	ALERTS
	Using Alert Boxes
	Design Time Properties and Programming Methods

	TEXT BOXES AND TERMINALS
	Introduction

	Text Input Control
	Design Time Properties
	Programming Methods

	Teletype Terminal Control
	Design Time Properties
	Programming Methods

	Text Log Control
	Design Time Properties
	
	Programming Methods

	ADVANCED CONTROLS
	CLOCKS AND TIMERS
	Introduction

	Understanding Time
	Getting / Setting Time
	Time Events

	Clock Properties
	Design Time Properties
	Programming Methods

	Timer Properties
	Design Time Properties
	Programming Methods

	LINE CHART
	Introduction

	Design Time Properties
	Programming Methods
	BAR CHART
	Introduction

	Design Time Configuration
	Programming Methods
	HISTOGRAM
	Introduction
	To add a histogram control:

	Design Time Properties
	Programming Methods

	WIND ROSE CONTROL
	Introduction
	Design Time Configuration

	Programming Methods

