
PROTEUS DESIGN
SUITE

Visual Designer Help

COPYRIGHT NOTICE

© Labcenter Electronics Ltd 1990-2019. All Rights Reserved.
The Proteus software programs (Proteus Capture, PROSPICE Simulation, Schematic Capture
and PCB Layout) and their associated library files, data files and documentation are copyright ©
Labcenter Electronics Ltd. All rights reserved. You have bought a licence to use the software on
one machine at any one time; you do not own the software. Unauthorized copying, lending, or
re-distribution of the software or documentation in any manner constitutes breach of copyright.
Software piracy is theft.

PROSPICE incorporates source code from Berkeley SPICE3F5 which is copyright © Regents of
Berkeley University. Manufacturer’s SPICE models included with the software are copyright of
their respective originators.

The Qt GUI Toolkit is copyright © 2012 Digia Plc and/or its subsidiary(-ies) and licensed under
the LGPL version 2.1. Some icons are copyright © 2010 The Eclipse Foundation licensed under
the Eclipse Public Licence version 1.0. Some executables are from binutils and are copyright ©
2010 The GNU Project, licensed under the GPL 2.

WARNING
You may make a single copy of the software for backup purposes. However, you are warned
that the software contains an encrypted serialization system. Any given copy of the software is
therefore traceable to the master disk or download supplied with your licence.
Proteus also contains special code that will prevent more than one copy using a particular
licence key on a network at any given time. Therefore, you must purchase a licence key for
each copy that you want to run simultaneously.

DISCLAIMER
No warranties of any kind are made with respect to the contents of this software package, nor
its fitness for any particular purpose. Neither Labcenter Electronics Ltd nor any of its employees
or sub-contractors shall be liable for errors in the software, component libraries, simulator
models or documentation, or for any direct, indirect or consequential damages or financial
losses arising from the use of the package.
Users are particularly reminded that successful simulation of a design with the PROSPICE
simulator does not prove conclusively that it will work when manufactured. It is always best to
make a one off prototype before having large numbers of boards produced.
Manufacturers’ SPICE models included with PROSPICE are supplied on an ‘as-is’ basis and
neither Labcenter nor their originators make any warranty whatsoever as to their accuracy or
functionality

LABCENTER ELECTRONICS LTD.

2

1

TABLE OF CONTENTS

COPYRIGHT NOTICE .. 1
TABLE OF CONTENTS ... 1

VISUAL DESIGNER TUTORIAL .. 1

INTRODUCTION 1

GUIDED TOUR 3

Visual Designer Environment 4

Editing Skills 17
Editing a Block 25

Wiring blocks together 27

Clipboard Commands 28

Adding, Using and Removing Peripherals 29

Adding, Using and Removing Variables 30
Flowchart Blocks 34

Event / Subroutine Block 34

End Block 36

Assignment Block 36

Subroutine Call Block 37

Stored Data Block 37
Peripheral Operation Block 38

Time Delay Block 39

Decision Block 40

Interconnector Block 43

Comment Block 44

ARDUINO HARDWARE 44
Grove Sensors and Modules 46

Breakout Boards and Peripherals 48

Schematic Design 49

LABCENTER ELECTRONICS LTD.

2

RASPBERRY PI HARDWARE 50

Grove Sensors and Modules 53
DEBUGGING SKILLS 57

RESOURCE FILES & DATA STORAGE 65

PROGRAMMING THE PHYSICAL HARDWARE 68

CONFIGURING RASPBERRY PI 78
ARDUINO TUTORIALS .. 1

Introduction 1
Tutorial 1 : Flashing LED's 2

TUTORIAL 2: LUX SENSOR 13

TUTORIAL 3: DATA STORAGE 25

TUTORIAL 4 : MOTOR CONTROL 31

TUTORIAL 5: SCHEMATIC BREADBOARD 42
RASPBERRY PI TUTORIALS .. 1

Introduction 1

Tutorial 1 : Flashing LED 2

Tutorial 2 : Night Light (w/ Grove) 17

Tutorial 3 : Motor Control 27
TURTLE SIMULTAION ... 1

INTRODUCTION 1

TUTORIAL - OBSTACLE AVOIDANCE 5

Programming the Physical Turtle 14
VISUAL DESIGNER COMMAND REFERENCE .. 1

Introduction 1

Funduino Turtle 2
Zumo Turtle 6

Mechanical Forces 20

1

VISUAL DESIGNER TUTORIAL
INTRODUCTION

Visual Designer is a unique development tool that uses flowchart blocks together with
schematic clips of Arduino™ shields or Raspberry Pi hats to allow drag and drop creation of
real-world Arduino and rPi embedded systems.

 Single step debugging in Visual Designer with the AdaFruit Motor Shield

This document explains the various features of Visual Designer and includes several practical
example projects and walkthroughs. Other modules in the Proteus system such as the
schematic capture and general simulation have their own help files and are companion
resources to this document. You'll find these help files either on the help menu in the schematic
capture module or via the Help section on the Proteus home page.

Launchpad for other help files.

LABCENTER ELECTRONICS LTD.

2

What is Arduino™ / Genuino™?
Arduino is an open-source computer hardware and software company, project and user
community that designs and manufactures microcontroller-based kits for building digital devices
and interactive objects that can sense and control objects in the physical world.

The project is based on microcontroller board designs, manufactured by several vendors, using
various microcontrollers. These systems provide sets of digital and analog I/O pins that can be
interfaced to various expansion boards ("shields") and other circuits.

 See Also: Arduino Website

 The Arduino and Genuino names and logos are registered trademarks of Arduino,
LLC.The Visual Designer for Arduino simulation product is not directly connected or
endorsed by Arduino.

What is Raspberry Pi ?
Raspberry Pi is a series of small, low cost, single board computers. The Raspberry Pi is still a
complete Linux computer but is still often used to control external electronics.

What is Grove ?

Grove is a modular electronic platform for quick prototyping. Every module has one function,
such as touch sensing, creating audio effect and so on. Just plug the modules you need to the
base shield, then you are ready to test your ideas.

This Grove Starter Kit is a great way for beginners and students to get started with Arduino. The
Grove Base Shield drops onto your existing Arduino and lets you connect up to 16 Grove
modules without any fuss. The Arduino headers are still broken out on the top of the shield
making it very easy to connect other breakout boards and sensors to your Arduino.

 See Also: Grove Starter Kit (Website)

https://www.arduino.cc/
http://www.seeedstudio.com/depot/Grove-Starter-Kit-p-709.html

Visual Designer

3

Raspberry Pi: Limitations of Simulation
The Raspberry Pi is a high level behavioural model in terms of simulation. Since the rPi runs a
full copy of Linux and arbitrary code can be executed a full simulation model is not possible.
Specifically, the following libraries are supported:

Smbus
Pygame
Wiringpi
RPi.GPIO
Spidev

There is also a set of Python libraries, which are supplied by us in the Raspberry Pi drivers
directory:

Adafruit_GPIO
Adafruit_I2C
Adafruit_MCP230xx
Adafruit_MCP3008
Adafruit_MotorHAT
Adafruit_PCA9685
Adafruit_PureIO
Automationhat
Explorerhat
ADS1x15
cap1xx
grove_128_64_oled
grove_rgb_lcd
grovepi
max31855
pcf8574
pcf8591
piglow
sn3218

If you are writing your firmware with Visual Designer flowchart blocks then the Raspberry
Pi simulation should work with no problems. However, if you convert your project
to write your program in Python then of course you can write code that is based on
other Python libraries. In such cases you may not be able to simulate your project
because your source code may pull in libraries unsupported in simulation.

GUIDED TOUR

Visual Designer is a tool for designing embedded systems via a simple flowchart interface and
then simulating and debugging the entire embedded system in software. It makes sense
therefore that the IDE changes and provides both an Editing Layout and a Debugging Layout.

LABCENTER ELECTRONICS LTD.

4

This topic introduces both environments and includes links to more detailed topics where
appropriate.

Visual Designer Environment

Editing Layout
At design time, we are creating our embedded system, adding both hardware shields
and embedded control logic. The Visual Designer Environment breaks down into six
main areas as shown below

 The Visual Designer IDE at Design Time.

1) Menus, Icons and Tab 2) Project Tree
3) Flowchart Blocks 4) Editing Window
5) Output Window 6) Simulation Control Panel

Visual Designer

5

Debugging Layout
During simulation and debug, the environment changes to provide relevant tools.

 The Visual Designer IDE when single step debugging a simulation.

7) Source Code Window 8) Pop-up Peripheral Windows
9) Active Popups 10) Variables Window / Debug Windows

These items are all discussed in the following sections and are also covered in a more practical
way in the tutorials.

LABCENTER ELECTRONICS LTD.

6

1) Menu's, Icons and Tabs
The top menu commands will be familiar to most users and specific functionality is discussed
where relevant in the tutorial and other areas of the documentation. Some of the iconography
may be new however and each icon is therefore listed below along with its use:

ICON DESCRIPTION ICON DESCRIPTION ICON DESCRIPTION

New Proteus
Project

Open VSM Studio
/ Visual Designer

Create New
Firmware Project

Open Project

Open Project
Notes

Delete Existing
Firmware Project

Save Project

Open the Help
files

Add Source Files
to the Existing
Project

Close Project

Zoom In

Remove Source
Files to the
Existing Project

Open Proteus
Home Page Open
Proteus Home
Page

Zoom Out

Build / Compile
Project

Open Schematic
Capture Program

Zoom All

Rebuild / Compile
Project

Open the PCB
Layout Program

Undo

Stop Build

Open the 3D
Viewer

Redo

Attached to IDE /
Hardware

Open the Gerber
Editor

Cut

Project Settings

Open the Design
Explorer

Copy

Type of Build

Open the Bill of
Materials

Paste

The tabs allow you to switch between different areas of the Proteus Design Suite. We will be
working primarily inside Visual Designer but we are building an embedded system and that
creates a schematic design as well. The schematic will be automatically drawn as we add
shields and peripherals to Visual Designer but you can switch to the Schematic tab at any time
to look at your 'virtual hardware'. You can even drag and drop a tab onto a different monitor if
you want to look at both modules simultaneously.

Visual Designer

7

Drag and Drop Tabs onto a second monitor to split screen.

 Having virtual hardware in the form of a schematic really shows its power during
simulation as you can take measurements anywhere you please. You simply place and
wire instruments such as oscilloscopes and logic analyzers to inspect waveforms. See
the tutorial for more information and examples.

2) Project Tree

The project tree in Visual Designer performs three main roles:

 Control of Flowchart Sheets

 Control of Resources in the Embedded System

 Control of Hardware Peripherals in the Embedded System

Control of Flowchart Sheets
When you start a new project you will have by default a single sheet in the Editing Window
called 'Main'. You can add more sheets (for example a subroutines sheet) if your program is
likely to become quite large.

LABCENTER ELECTRONICS LTD.

8

Adding and naming a second sheet in the Flowchart.

When you have more than one sheet in your project you can quickly move between sheets by
double clicking on the sheet name in the Project Tree. Alternatively, you can select the sheet
you wish to navigate to from the sheet tabs at the top of the Editing window.

 You can also find the sheet commands on the Project Menu at the top of the Visual
Designer IDE.

Control of Resource Files
Resource files provide a great way to include pictures and audio files into your project. You can
add /remove resource files from the right click context menu on the Project Tree. Once you
have a resource file you can drag and drop it straight into the setup routine of your flowchart
program to assign it a handle.

Control of Hardware Peripherals
Visual Designer is a development environment for a complete embedded system and so the
peripherals block includes both on-board peripherals of the CPU and also external peripherals
(supported Arduino shields or Grove Sensors) that you add to build up your hardware design.
When you start a new project you will see two or three peripherals such as CPU core and
Timer1 related to the processor core and you add extra peripherals via the right click context
menu on the Project Tree or the command on the Project Menu.

Adding a LUX sensor to the current Flowchart Project

Once added, you can see all of the methods available to you. These are the means by which
you interact with the hardware and you simply drag and drop the method into
your flowchart program where it will appear as an I/O Peripheral Block.

Visual Designer

9

Drag and Drop the method you want straight into place in the Flowchart Editor.

You can also rename Peripherals once added. This is particularly useful for example, if you
have several buttons or LED's where it is more transparent to name them according to their job.
Simply right click on the peripheral and select the rename option from the resulting context
menu.

3) Flowchart Blocks
The Flowchart Blocks are the building blocks of your program. While you will often drag and
drop straight from the Project Tree you can also drag and drop flowchart objects from this
column onto the Editing Window. Indeed, some object types such as Delay Blocks, Loop
Constructs and Event Handlers are only available from this column.

4) Editing Window
The Editing Window is the place where you actual design your flowchart and create your
programs. For programs with multiple sheets the Editing Window displays the current sheet and
provides a small tab-strip at the top for easy navigation to other sheets.

 Three sheets in a Visual Designer Program with the Editing Window showing the Main Sheet.

The sheet size you see is simple a set number of grid squares wide and high. Flowchart blocks
and other object are then scaled to also be a set number of grid squares. You can, from the

LABCENTER ELECTRONICS LTD.

10

Page Setup command on the Project Menu, adjust the number of visible grid squares. This
allows you to change the relative size of the flowchart blocks on the screen; for example, if you
want the blocks to be bigger you reduce the number of grid squares on the screen.

When you print to physical paper the chart will automatically fit to page.

You can place flowchart objects on the editing window by drag and drop from either the Project
Tree or from the Flowchart bar on the left hand size.

You can zoom in and out the Editing Window via either the middle mouse wheel, the F6 and F7
keys or the icons on the toolbar.

5) Output Window
The output window provides a dump of status information and will list any errors when you build
your flowchart or program the physical hardware.

 If you close the output window the Editing Window will be larger and you will 'zoom in' a
little more on the flowchart. The output window will come back automatically when it is
needed (i.e. when you build your program)

6) Simulation Control Panel
Interactive simulations are controlled from a simple panel that behaves just like
a normal remote control. This control is situated at the bottom left of the screen
by default. There are four buttons that you use to control your simulation.

 The PLAY button is used to start the simulator.

Visual Designer

11

The STEP button allows you to step through the animation at a defined rate. If the button
is pressed and released then the simulation advances by one time step; if the button is
held down then the animation advances continuously until the button is released. The
single step time increment may be adjusted from the Animated Circuit Configuration
dialog box on the System Menu.

 The step time capability is useful for monitoring the circuits more closely and seeing in
slow motion what is affecting what.

 The PAUSE button suspends the animation which can then be resumed either by clicking
the PAUSE button again, or single stepped by pressing the STEP button. The simulator
will also enter the paused state if an breakpoint is encountered.

 The STOP button tells the system to stop doing a real time simulation. All animation is
stopped and the simulator is unloaded from memory. All the indicators are reset to their
inactive states but the actuators (switches etc.) retain their existing settings.

7) Source Code Window
The source code window is the primary tool for debugging your designs in Proteus and allows
you to single step your program, advancing the entire embedded system as you debug your
software. When the simulation is paused the source window will display the flowchart with the
currently executing block highlighted in red.

Simulation running and then displaying the program for single step debug when paused.

You can even choose to debug the source code rather than the flowchart by first selecting the
Debug Generated Code option from the project tree context menu.

8) Peripheral Popup Windows
Some peripherals present a popup window during simulation. For example, if you add the Grove
Terminal Module then you will see a virtual terminal popup during simulation that you can use to
read and write text.

LABCENTER ELECTRONICS LTD.

12

Virtual Terminal acting as a console with info dump on servo motor position.

Peripheral popups are typically visible during running simulation so that you can interact with
them. They can be closed at any time from the cross at top right and then re-opened from the
Debug menu when the simulation is paused.

9) Active Popups
Active popups are simply areas of interest on the schematic that appear as docked widgets on
the right hand side of the of the Visual Designer debugging layout. They have two main roles :

1) You can see relevant parts of the hardware while debugging the software (E.g. text
appearing on an LCD).

2) You can interact with relevant parts of the hardware while debugging the software (E.g.

press a button or adjust a sensor).

The end result of using active popups is that you don't have to constantly switch tabs between
the schematic and the firmware in a debug session. They allow all relevant information to be
displayed on a single tab.

 You can, if you prefer, work with two tabs and switch between schematic and Visual
Designer as required. You can even drag and drop into space if you are at a workstation
with multiple monitors.

10) Variables Window
The variables window is a debugging tool that lists program variables during a debug session. It
includes several powerful features to help you when debugging.

Visual Designer

13

Expansion of compound types
The variables window will seamlessly handle compound types (structs, arrays, enums)
and pointers, providing an expandable tree displaying the contents of the type or
the de-referencing of the pointer.

Change Notification and Previous Values
A variable in the variables window will highlight when the value of that variable changes and the
simulation is paused. You can also view the previous value of the variable by selecting the
Show Previous Values option from the context menu (right click on the variables window).

LABCENTER ELECTRONICS LTD.

14

If you have a compound type (such as a struct) and an element of the type changes then only
that element will highlight. This means that, unless the type is expanded, you will not see a
change in the variables window at the point the element changes.

Add to Watch Window
The variables window is not visible during free running simulation but it's companion the Watch
Window is. You can add a variable to the watch window by the right click context menu and you
can then open the watch window from the Debug Menu.

Visual Designer

15

 If you drag a variable to the watch window and you then recompile the program and re-
simulate then there is no guarantee that you will be viewing the contents of the variable in
the watch window – this depends on how the compiler re-uses memory. The watch
window simply monitors an address in memory. Be careful.

 In addition to the Variables and Watch Windows there are many more available debug

windows which provide more detailed information about the MCU. These can all be
launched from the Debug Menu when the simulation is paused and are documented in
full in the Proteus VSM help files.

Colours, Fonts and Flowcart Editor
In Visual Designer you can edit the fonts, colours and the style of the Flowchart editor to your
own preference. To open the dialog go to the System Menu > Editor Configuration

Fonts and Colours

LABCENTER ELECTRONICS LTD.

16

Text Editor

Flowchart Editor

Visual Designer

17

Editing Skills

Overview
This topic explains how to interact with the flowchart editor. The focus here is on learning the
skills needed to drive the software and create a program; simulation and debugging are covered
separately and we will link to more detailed topics where appropriate.

Navigation
To zoom in and out on the Editing Window

You can either:

1) Roll the middle mouse wheel in and out. This will zoom the Editing Window around the
mouse position.

2) Use the zoom icons. This will zoom around the center of the Editing Window.

3) Press the F6 key to zoom in and the F7 key to zoom out. This will zoom the Editing

Window around the current mouse position. The F8 key will reset the zoom levels to
show the entire sheet.

4) Hold SHIFT key and left drag a box with the mouse. When you release, the Editing

Window will zoom to the area drawn out by the box.

To pan across the sheet in the Editing Window

You can either:

1) Roll the middle mouse wheel backwards (Zoom out), move the mouse to desired place
and roll the middle mouse wheel forwards to zoom in.

2) Hold the SHIFT key down and bump the mouse against the side of the Editing Window.

This will pan the sheet across the Editing Window.

LABCENTER ELECTRONICS LTD.

18

To switch between sheets in the Editing Window

You can either:

1) Click on the sheet that you want on the small tabholder directly above the main Editing
window display.

2) Double click on the sheet that you want in the project tree.

 Placing, Selecting and Deleting Blocks
To place a flowchart block

Peripheral Operation Blocks:

Add the peripheral via the right click context menu on the Project Tree and then drag and drop
the method onto the Editing Window.

Storage Block Types:

Add the resource via the right click context menu on the Project Tree and then drag
and drop onto the Editing Window

Visual Designer

19

 Any block type:

Drag and drop from the appropriate flowchart icon across into the Editing Window.

To select a flowchart block:

Left click the mouse on the block.

To select multiple flowchart blocks:

You can either:

1) Drag a box with the left mouse button over the blocks you want to select.

LABCENTER ELECTRONICS LTD.

20

2) Hold SHIFT key down and left click on blocks individually.

 Note that many actions are specific to a single flowchart object (e.g Edit). So, while you
can for example move selected objects as a group, you will be prevented from performing
other block operations.

To delete a flowchart block:

You can either:

1) Right click on the block and select delete from the resulting context menu.

2) Left click to select the flowchart block and press the delete key on the keyboard.

To delete multiple flowchart blocks:

Select the blocks to delete and then press the delete button on the keyboard to remove them.

Attaching, Moving and Detaching Blocks
To move an unconnected block:

Select the block by left clicking and then drag the block.

To move a connected block:

Select and then drag the block. This will bump the adjacent block in the direction of motion and
result in a concertina affect. This is an important technique because it is the method you use to
make space on a flowchart for inserting a block.

 You can quickly 'tidy' a flowchart vertically by moving the top or bottom blocks to make
the spacing between all of the blocks the same.

To move a series of connected blocks:

If the set of blocks you want to move includes both a start and end block then you can simply
drag a box around it and move it to a better place on the sheet.

Visual Designer

21

Block move of an entire routine

If you want to move the routine onto a different sheet you can use the clipboard cut and paste
across the two sheets.

If you want to move a series of connected blocks that form part of a routine, but not the full
routine, then you must either:

1) Tear off the series of blocks and move them elsewhere.

LABCENTER ELECTRONICS LTD.

22

2) Move them in the context of the current routine.

 If you move vertically this will bump other blocks closer together but it will not allow you to
change the position of the selected blocks in the flowchart.

 If you move horizontally it will move the entire routine horizontally.

Also, it can lead to some very strange looking charts!

Block Move of part of a routine.

To attach a block to a flowchart

When you want to insert a block you do so by dragging and dropping. As you drag the flowchart
block you will see connection nodes appear when the block is correctly positioned over the wire.
Releasing at this point will connect the block to the flowchart.

Connection Nodes tell you when to release the mouse - this will auto-connect the block to the

chart

 You can do this as you initially place the block or by selecting a block that is placed but
unattached.

 Note that some block can only be connected at top and bottom (e.g. delay block) while

others also allow sideways entry (e.g. assignment block).

If you are inserting a block you may need to first make some space. You can do this easily by
dragging one of the blocks in the flowchart up or down to clear an area for the new block to go.

Visual Designer

23

To detach a block from a flowchart
You can detach or tear off a block from a flowchart by either:

1) Right click on the block and select tear off from the resulting context menu. This will
detach the block and leave it slightly to the side for re-positioning.

2) Select the block and hold the CTRL button down as you move the block away. This will

tear the block from the current chart and you can then re-position as required.

LABCENTER ELECTRONICS LTD.

24

To attach a series of flowchart blocks

1) Make some room at the place in the chart you want to insert.

2) Select the series of 'connected' blocks you want to insert.

3) Move them into place, watching the top connection nodes of the uppermost block.
When this appears, check that the bottom connection node is also visible.

4) Release the mouse to insert.

To detach a series of flowchart blocks

1) Select the series of blocks you want to insert.

2) Hold the CTRL button down and drag the blocks off the flowchart or use the tear off
command on the Edit Menu.

 Commands on the context menu apply to a single block whereas commands on the Edit

menu apply to all selected blocks. This is an important distinction as some commands
(e.g. Edit) are meaningless for multiple blocks.

Visual Designer

25

Editing a Block

To edit a block you can either right click and select Edit from the resulting context menu or you
can double click on the block.

Regardless of the type of block you are editing you are almost certain to want to enter an
expression to give the block meaning. In some cases such as calling a subroutine this will be
extremely simple but for other block types it can be a little more complex. Fortunately, Visual
Designer can help in several different ways:

Variable and Function Listing
Where appropriate, all current variables are displayed in the bottom left of the dialogue form and
standard library functions are displayed in the bottom right of the dialogue form. Double clicking
on variable/function will add it to the current expression.
You can easily create, edit and remove variables via the buttons at the bottom of the variables
display.

Multiple Expression Assignments using Variables

LABCENTER ELECTRONICS LTD.

26

Combo-boxes will be used to restrict selection to variables of the correct type where possible.
For example, the loop variable in a For-Next loop must be of type INTEGER.

Auto Complete
The auto-complete system will both prompt you with function hinting during entry and also
automatically complete named variables when typing. Press TAB or ENTER to auto-complete.

Auto-completion

Function hinting

Syntax and Type Checking
Comprehensive syntax and type checking takes place as you enter the expression. The
expression status is indicated at the right hand side and clicking on the red info icon will provide
detail on any errors in the expression.

Get more information on incorrect expressions.

Refer to specifics on individual block types for more detailed information.

Visual Designer

27

Wiring blocks together

Blocks are connected together with flowlines and Visual Designer provides an point-to-point
router to help with the task. The golden rule is that you must connect from an output to an input.
To join blocks together with a flowline

1) Click on the output connection node.
2) Move the mouse to the destination (input) connection node.
3) Click to complete the flowline.

 It's good practise to connect flowlines from top downwards to bottom because it makes

loops much clearer. Try to avoid connecting from bottom to top in normal flow.

To adjust / move a placed flowline

1) Click to select the flowline.
2) The mouse cursor will change to show you the available direction of movement.
3) Left drag with the mouse to drag.

To delete a flowline

1) Right click on the flowline and select the delete option from the context menu.

Splitting the flowchart into columns

If the flowchart is getting to the bottom of the page inside a single routine you may need to split
the flow with interconnect blocks.

1) Right click on the flowline near the bottom of the page and select split from the resulting
context menu.

LABCENTER ELECTRONICS LTD.

28

2) Block Move the bottom portion up to the top of the page at the right hand side.
3) Make some space.
4) Continue inserting blocks.

To change the flow of decision blocks

1) Place two flowlines corresponding to the output paths of the decision.
2) If the YES and NO paths are the wrong way around, right click on the decision and

swap them.

Clipboard Commands

Clipboard commands in Visual Designer work in exactly the same way as other Windows
applications and can by invoked in the normal way.

 CTRL+X : Cut to Clipboard.

 CTRL+C : Copy to Clipboard.

 CTRL+V : Paste from Clipboard.

 Menu Icons.

 Commands on Edit Menu.

Visual Designer

29

The most common use for the clipboard in Visual Designer is for organizing flowchart routines in
the Editing Window and, in particular, for moving routines between sheets.
Remember when copying and pasting that you may be pasting blocks that include peripherals
(e.g. hardware shields). In this case the paste will duplicate the flowchart blocks and
assignments but will not create new hardware on the schematic. If that is what you want to do,
you need to add a peripheral, edit the relevant pasted blocks and assign the method to the
correct hardware.

Adding, Using and Removing Peripherals

To add a peripheral device

1) Right click on Project Tree and select Add Peripheral from the resulting context menu.
2) Select the shield or Grove peripheral from the Browser.
3) If you are using Grove peripherals you may need to switch to the schematic module,

double click on the label and change the connector to a unique ID.

 With Arduino, it is quite easy to add shields that are incompatible with each other. For

example, if two shields use the same CPU timer, the program is unlikely to work. You
need to check this compatibility yourself as Visual Designer does not interfere with the
Arduino drivers.

LABCENTER ELECTRONICS LTD.

30

To use a peripheral device

1) Expand the menu in the Project tree to access the methods of the peripheral.
2) Drag and drop the method onto the flowchart.

To remove a peripheral device

1) Right click on the peripheral in the Project tree and select Remove Peripheral from the
context menu.

2) Confirm from the resulting dialogue box.

 If you remove a peripheral device, it will not remove any flowblocks that referenced the

device. You need to adjust or delete all such blocks manually.

Adding, Using and Removing Variables

Variables are created and manipulated inside the object editing dialogue forms and are always
global to the project. The following types are supported:

 Boolean (TRUE / FALSE)

 Integer (Integer number)

 Float (Floating point number)

 String (String of characters)

 Handle (Handle to a resource).

The expression editor will type-check assignments automatically.

To create a new variable

1) Edit the block you are working on.
2) At the bottom left, use the New button to launch the Create Variable dialogue.

Visual Designer

31

3) Enter the name of the variable and assign it a type.
4) Click OK to exit the dialogue.

1, Click New. 2, Set the Variable and click OK.

To use an existing variable
Edit the block you are working on and then either:
1) Use the variable drop down to select the variable.

LABCENTER ELECTRONICS LTD.

32

2) Type the variable name and use the auto-complete.

3) Double click the variable name from the list to insert into the expression.

To edit a variable

1) Edit one of the blocks on the flowchart.
2) Select the variable from the list on the left hand side.
3) Click the edit button and change the name and/or type of the variable.

Visual Designer

33

To remove a variable

1) Edit one of the blocks on the flowchart.
2) Select the variable from the list on the left hand side.
3) Click delete to remove the variable

 If you edit or remove a variable you need to remember to check and change all the other

flowchart blocks in which the variable has been used.

LABCENTER ELECTRONICS LTD.

34

Flowchart Blocks

Visual Designer includes a small set of flowchart blocks which are used as the programming
constructs in your firmware. These will be familiar to many users and are listed below in full.

ICON DESCRIPTION ICON DECRIPTION

Event Start Block: Used
together with an end block to
define a sub-routine or event
handler.

Time Delay: A time
delay in program
execution.

End Block: Used together with
an event start block to define a
sub-routine or event handler.

Decision Block: A
boolean decision in the
flowchart.

Assignment Block: Used to
assign a value to a variable.

Loop Construct: Used
to simplify the
configuration of
different types of loop.

Subroutine Call: Used to call a
sub-routine.

Interconnector : Used
in pairs to connect
longer sequences of
blocks into separate
columns on the editor.

Stored Data Block: Used to
specify an action on a storage
object (such as an SD Card).

Comment: Allows you
to add a textual
comment on the
flowchart.

I/O (Peripheral) Operation:
Used to specify an action on
the hardware, either internally
to the CPU (e.g. timer) or
external (e.g. LCD).

Event / Subroutine Block

The event block is used together with the end block to define the start and end of sub-routines
(e.g. to write to a display) and event handlers (e.g. to handle a timer interrupt).
If you are creating a subroutine then all that is required is a name for the block. This is the name
of the routine and will be selectable when placing and editing subroutine call blocks.

Visual Designer

35

Simple Subroutine Config - Only the name is required.

If you are creating a routine to handle a triggerable event such as an interrupt handler then you
need to also specify the trigger

Setting up a timer interrupt service routine based on a timer1 match event.

 The periodic trigger provides a very handy way to get a repeatable call at regular time
intervals. It does however make use of one of the CPU timers so be careful not to use it
elsewhere if you configure it here for use here.

LABCENTER ELECTRONICS LTD.

36

End Block

The end block is used to terminate a routine or event handler and is normally placed together
the event block.

 A typical Arduino project will initialize with two event and end blocks, one for program
setup and the other for main program execution.

Assignment Block

This is the standard block for assigning values to variables. It is also the place to create new,
edit and delete variables.

Assigning values to variables for the time.

Visual Designer

37

Subroutine Call Block

The subroutine block lets you call a function defined elsewhere on the flowchart.

Specifying the subroutine to call.

 You must first create and name the subroutine with an event and end block. The combo-
box on the subroutine dialogue lists all named routines.

Stored Data Block

The storage block is used to denote an action or method on a storage object (SD Card). The
methods are then typically used with resources (e.g a text file) to manipulate the filestore.

When you add a shield that contains an SD card it will almost always have a method for using
the contents of the SD Card. For example, a TFT shield has a DrawBitmap() method and a
Wave shield has a Play() method. In these cases, you should not use the storage data blocks
but rather just drag and drop the resource onto the chart

LABCENTER ELECTRONICS LTD.

38

Peripheral Operation Block

A peripheral operation block basically allows you to perform an action on the hardware. With a
new project the hardware will consist of only the processor and the available actions are
therefore limited.

Available actions on the processor.

Visual Designer

39

However, as you add peripheral shields to your project you will be able to interact and control
their I/O via this block type.

Available methods on the Grove Servo Motor Shield.

Time Delay Block

This block is used to introduce a specific delay in the program.

Specifying a 100ms Delay in the program.

 In Arduino, no other reading of sensors, mathematical calculations, or pin manipulation
can go on during the delay function, so in effect, it brings most other activity to a halt.
Interrupts and other specific functions will however still work. Refer to the Arduino
documentation on Delay() for more detail.

LABCENTER ELECTRONICS LTD.

40

Decision Block

The decision block is the basic yes/no question that determines desired program flow. The
dialogue form is fairly self-explanatory and requires a boolean expression.

Testing the is_attached variable in a decision block.

When a decision block is linked on the flowchart, the YES and NO labels are placed in default
locations. You can swap them over via the context menu if that better suits the flowchart.

Swap the YES and NO flowlines on a decision block.

Loop Construct Block
The loop construct provides a simple, dialogue driven way to configure some common types of
program loop. It is placed as a pair and the required logic blocks are then attached inside the
loop. The edit loop dialogue then provides several options:

Visual Designer

41

Count Loop
The count loop is simply a way of executing the loop body a specified number of times.

Count Loop

For-Next Loop
A For-Next Loop is an extension of the count loop as you need to specify the start, stop and
step to determine how often the loop body will execute.

For-Next Loop.

LABCENTER ELECTRONICS LTD.

42

While-Wend Loop
This construct executes the body of the loop while the tested condition evaluates as TRUE.

While-Wend Loop

 Note that the test takes place at the top of the loop and so if the test is FALSE to begin
with the loop contents will not be executed at all

Repeat-Until Loop
Repeat-Until is very similar to While-Wend except:

 It executes until the tested condition evaluates to FALSE

 The test takes place at the bottom of the loop and so the loop body always executes at
least once.

Visual Designer

43

Repeat-Until Loop

Interconnector Block

The interconnect blocks are basically 'virtual connections' and need to be in pairs. If you have
two interconnect blocks with the same number then you can imagine an invisible wire joining
them together. The purpose of the interconnect blocks is to let you split flowchart logic into
multiple columns.
You can either drag and drop two interconnect blocks, link them on the flowchart and then re-
number appropriately, or you can simply right click and split a flowline.

Splitting into two separate lines with interconnect

LABCENTER ELECTRONICS LTD.

44

 You can join two interconnects together into a single line by dragging one over the top of
the other.

Comment Block

The comment block enables a free format block for the entry of descriptive text.

Comment Block Dialog

ARDUINO HARDWARE

Introduction
Designing 'virtual hardware' for your project is greatly simplified in Visual Designer. The various
options available to you are described in detail below.

Arduino Base Board
In hardware, Arduino is a system consisting of a fairly simple base board with an AVR
microcontroller, some supporting electronics and Arduino pin headers (connectors). There are
then a wealth of peripheral boards (shields) which plug into the pin headers to form the
hardware for a particular project.

In Visual Designer for Arduino, the creation of the project is the point at which you make your
decision on the base board (E.g. Arduino Uno, Arduino Mega). This is automatically placed on
the schematic when the project is created.

Visual Designer

45

Automatic placement of the Arduino Mega on the Schematic when the Project is created.

Arduino Shields
Arduino shields are modular circuit boards that piggyback onto your Arduino base-board to
instill it with extra functionality. They are the simplest way to add hardware functionality to your
project because the circuitry and connectivity on the schematic happens automatically.

Adding a Shield
When you then want to add a shield in Visual Designer you right click on the Project Tree and
select 'Add Peripheral' from the resulting context menu. Select the 'Adafruit' category on the
peripheral browser and then select the shield you want to add. This will auto-place the shield
electronics on the schematic.

Adding a Peripheral will auto-place and auto-connect on the schematic.

Writing a Program to Control a Shield
Shields appear in the project tree in Visual Designer once picked from the Peripheral Gallery.
They include high level methods that allow you to quickly control the connected electronics via
flowchart blocks.

LABCENTER ELECTRONICS LTD.

46

Drag and Drop methods make it simple to drive the shields.

Potential Pitfalls
Working with Virtual Shields is the simplest method to quickly create projects in Visual Designer.
You do however still have to take care with what hardware you choose to use. For example:

 You need to make sure that your use of Arduino shields is compatible with hardware. For
example, some shields are incompatible because they make use of the same resource
on the CPU (e.g. Timer1). Others are pin incompatible.

 You need to make sure that your target Arduino base board has enough memory to
handle the shields you are adding to it. In particular, with an Arduino Uno you can run
out of memory if you add shields with large and complex software stacks.

Grove Sensors and Modules

Grove is a modular electronic platform for quick prototyping. Every module has one function,
such as touch sensing, creating audio effect and so on. You simply plug the modules you need
into the base shield and then connect the base shield to the Arduino base board in the normal
way.

The Grove Starter Kit Plus is a great way for beginners and students to get started with Arduino.
The Grove Base Shield drops onto your existing Arduino and lets you connect up to 16 Grove
modules without any fuss. The Arduino headers are still broken out on the top of the shield
making it very easy to connect other breakout boards and sensors to your Arduino.

Visual Designer

47

Grove Starter Kit Hardware.

Adding a Grove Module
You can add a Grove module in the same way as adding a shield, except that you select the
Grove category in the Peripheral browser.

Adding Grove Starter Kit modules in Visual Designer.

LABCENTER ELECTRONICS LTD.

48

You can then control the Grove peripherals via the high level methods available from the Project
Tree. Multiple peripherals and sensors can easily be added to a single project which provides
an extra level of flexibility over using standard Arduino shields.

Potential Pitfalls
When you are working with Grove modules in Visual Designer the process is identical to
working with complete Arduino shields. However, since the modules themselves plug into an
Arduino shield, you need to take care not to re-use a connector on the Grove board. The real
Grove base-board shield will look something like the following:

Grove Shield - the sensor modules plug-in to the exposed header pins.

When you add a Grove peripheral it will be assigned an ID on the schematic corresponding to a
connector on the real board. If you get a duplicate, you'll need to edit and rename one of the
connectors to a free slot.

If two grove modules have the same connector, you need to edit one and assign to an unused

header slot on the Grove Shield.

 You need to make sure that your use of Grove modules is compatible with hardware.
Since the pins used in each socket overlap it is quite easy to mistakenly use the same pin
twice. A good example of this is discussed in Tutorial 2

Breakout Boards and Peripherals

The third category of hardware that you will find in the Peripheral Gallery is breakout boards.
These are useful and interesting pieces of electronics (often single components) for which we
have provided control methods inside Visual Designer. So, when you add a breakout peripheral
to your project, you can drive it from the methods it adds to the Project Tree.

Visual Designer

49

Breakout boards provide even more flexibility on the schematic. Indeed, they often connect to
other schematic components that you want to place and wire yourself.

Potential Pitfalls
CPU resources and pin assignments need careful consideration.

Schematic Design

With Visual Designer you have access to the full power of the Proteus VSM simulation
environment. This means that you have a professional schematic capture tool with tens of
thousands of embedded components that you can place, wire and simulate.

This is the most flexible design method of all but involves a significantly higher learning curve.
The programming in Visual Designer will have to be done via the CPU methods rather than
specific methods for peripherals.

LABCENTER ELECTRONICS LTD.

50

Potential Pitfalls
Schematic design for simulation is a large and relatively complex topic. In addition to the basic
of placement and connectivity there will also be power considerations and you will need to
program for interconnect protocols where appropriate. At this stage, the transition from Visual
Designer to Proteus VSM should be considered as there is a point beyond which C
programming is required to effectively design the embedded system.

RASPBERRY PI HARDWARE

Introduction
Designing 'virtual hardware' for your project is greatly simplified in Visual Designer. The various
options available to you are described in detail below.

Raspberry Pi Base Board
In hardware, Raspberry Pi projects start with the Pi computer board and then sometimes will
have additional electronics attached via the header block. These can be either complete
functional electronics blocks (known in the Pi world as 'hats') or loose electronics components
such as LED's or buttons.

In Visual Designer for Raspberry Pi the creation of the project is the point at which you make
your decision on the base board. You can choose between the Raspberry Pi 3 or the Raspberry
Pi 3 with Grove. The latter can be thought of as the Pi3 with the Grove hat stacked on top of it

mk:@MSITStore:C:%5CPRODOCS%5CHTMLHELP%5CVISUALDESIGNER%5CBin%5CVISUALDESIGNER.chm::/rPi_Hardware.htm#Grove_Sensors

Visual Designer

51

Equivalent Hardware: Raspberry Pi on the Left and Raspberry Pi with Grove Hat on the right

Your choice will be automatically placed on the schematic when the project is created.

Automatic placement of the Raspberry Pi 3 on the Schematic when the Project is created.

 In theory, the Raspberry Pi Zero W should also work as the pinout is identical and it
contains the wi-fi chip. If you are working with this device select Pi 3 in the configurator.
Raspberry Pi 2 will not work with Visual Designer because the pinout is completely
different.

Raspberry Pi Hats
Raspberry Pi Hats are modular circuit boards that sit on your Pi3 base-board to instill it with
extra functionality. They are the simplest way to add hardware functionality to your project
because the circuitry and connectivity on the schematic happens automatically.

LABCENTER ELECTRONICS LTD.

52

Adding a Hat
When you then want to add a hat in Visual Designer you right click on the Project Tree and
select 'Add Peripheral' from the resulting context menu. Select either the 'Adafruit' or the
Pimoroni category on the peripheral browser and then select the hat you want to add. This will
auto-place the electronics on the schematic and connect it to the Pi baseboard.

Adding a Peripheral will auto-place and auto-connect on the schematic.

 The connections are made by terminal name. Two terminals with the same name can be
thought of as being connected with an invisible wire.

Writing a Program to Control a Hat
The Raspberry Pi Hat will appear in the project tree in Visual Designer once picked from the
Peripheral Gallery. They include high level methods that allow you to quickly control the
connected electronics via flowchart blocks.

Drag and Drop methods make it simple to drive the hats.

Visual Designer

53

Potential Pitfalls
Working with Virtual Shields is the simplest method to quickly create projects in Visual Designer.
You do however still have to take care with what hardware you choose to use. For example:

 You need to make sure that your use of hats is compatible with hardware. For example,
some hats are incompatible because they make use of the same resource on the CPU
(e.g. Timer1). Others are pin incompatible.

Grove Sensors and Modules

Grove is a modular electronic platform for quick prototyping. Every module has one function,
such as touch sensing, creating audio effect and so on. You simply plug the modules you need
into the base shield and then connect the base shield to the Raspberry Pi base board in the
normal way.

The GrovePi+ is the Pi Hat which attaches to the Pi 3 baseboard and includes 15 Grove 4-pin
interfaces that then let you directly connect Grove sensors to the Raspberry Pi.

 In Visual Designer if you want to want to work with Grove and Raspberry Pi you should
choose the Raspberry Pi 3 with Grove option during project creation.

Grove Pi+ Starter Kit is a great way for beginners and students to get started with Raspberry
Pi. The Grove Base Shield drops onto your existing Pi and lets you connect up to 16 Grove
modules without any fuss. The headers are still broken out on the top of the shield making it
very easy to connect other breakout boards and sensors to your Pi.

Grove Pi+ Starter Kit Hardware.

LABCENTER ELECTRONICS LTD.

54

Adding a Grove Module
You can add a Grove module in the same way as adding a shield, except that you select the
Grove category in the Peripheral browser.

Adding Grove Starter Kit modules in Visual Designer.

You can then control the Grove peripherals via the high level methods available from the Project
Tree. Multiple peripherals and sensors can easily be added to a single project which provides
an extra level of flexibility over using standard Raspberry Pi shields.

Potential Pitfalls
When you are working with Grove modules in Visual Designer the process is identical to
working with complete hats. However, since the modules themselves plug into a hat, you need
to take care not to re-use a connector on the Grove board. The real Grove base-board shield
will look something like the following:

Grove Shield - the sensor modules plug-in to the exposed header pins.

Visual Designer

55

When you add a Grove peripheral it will be assigned an ID on the schematic corresponding to a
connector on the real board. If you get a duplicate, you'll need to edit and rename one of the
connectors to a free slot.

If two grove modules have the same connector, you need to edit one and assign to an unused

header slot on the Grove Shield.

 You need to make sure that your use of Grove modules is compatible with hardware.
Since the pins used in each socket overlap it is quite easy to mistakenly use the same pin
twice.

Breakout Boards and Peripherals
The third category of hardware that you will find in the Peripheral Gallery is breakout boards.
These are useful and interesting pieces of electronics (often single components) for which we
have provided control methods inside Visual Designer. So, when you add a breakout peripheral
to your project, you can drive it from the methods it adds to the Project Tree.

LABCENTER ELECTRONICS LTD.

56

Breakout boards provide even more flexibility on the schematic. Indeed, they often connect to
other schematic components that you want to place and wire yourself.

Potential Pitfalls
CPU resources and pin assignments need careful consideration.

Schematic Design
With Visual Designer you have access to the full power of the Proteus VSM simulation
environment. This means that you have a professional schematic capture tool with tens of
thousands of embedded components that you can place, wire and simulate.

This is the most flexible design method of all but involves a significantly higher learning curve.
The programming in Visual Designer will have to be done via the CPU methods rather than
specific methods for peripherals.

Potential Pitfalls
Schematic design for simulation is a large and relatively complex topic. In addition to the basic
of placement and connectivity there will also be power considerations and you will need to
program for interconnect protocols where appropriate. It should also be noted that the
Raspberry Pi simulation model in Proteus is a high level behavioural model. Since the real rPi
runs a full operating system it is quite easy to run Python code that is not supported in
simulation.

Visual Designer

57

DEBUGGING SKILLS

Overview
When developing your embedded system you may want to test your program as it evolves and
you will certainly want to test it when it is complete. It is a rare occasion when everything works
perfectly first time and you'll therefore also need to debug your program in order to find and fix
errors.

Visual Designer makes this process extremely simple because it all happens in software. The
following topics summarize the essential skills needed to simulate, debug and measure with
Visual Designer. It's assumed at this stage that you are familiar with all the required editing skills
and have a project ready for testing.

System Level Simulation
When you add peripherals and control them in your flowchart program you are building an
embedded system. Loosely speaking, there will be the microcontroller board and some
hardware pieces representing the peripherals. Running a system level simulation is the real
power of Proteus because you are simulating the microcontroller together with all of the analog
and digital electronics connected to it. This allows you to interact with, test and debug your
project entirely inside the Proteus software suite.

To start a simulation
To begin simulating either press the F12 shortcut key or the play button on the animation control
panel. Your program will compile and simulation progress will be reported on the status bar.

When you start the simulation the time elapsed is shown on the status bar.

To stop a simulation
To end a simulation either press the ESCAPE shortcut key or the stop button on the animation
control panel. The program will stop and Visual Designer will return to the Editing Layout

Stop the simulation via the Control Panel.

mk:@MSITStore:C:%5CPRODOCS%5CHTMLHELP%5CVISUALDESIGNER%5CBin%5CVISUALDESIGNER.chm::/Guided__Tour.htm#Editing_Layout

LABCENTER ELECTRONICS LTD.

58

To pause a simulation
Pausing the Proteus system level simulation is an important concept; you are effectively
stopping time. For example, your capacitors wont discharge and your motors will maintain their
angular position and their momentum. This allows you to inspect both your program and your
virtual hardware and when you single step debug the entire system will advance in time
synchronously. Your embedded system works to the clock on the status bar, not the clock on
the wall and you are in charge of the clock ! It's enormously powerful and we'll see many uses in
both these topics and more practically in the tutorials.
 To pause a running simulation either press the PAUSE button on the keyboard or click the
pause button on the animation control panel.

Pausing a Simulation

A simulation will also be automatically paused at a breakpoint. Breakpoints are discussed in the
Debugging Skills topic below and demonstrated in the various tutorial topics.
Whenever the simulation is paused, Visual Designer will switch to full debugging layout and
both the flowchart and the various debug windows will become available for inspection and
interaction.

Pausing the Simulation prepares Visual Designer for debugging.

 You don't see the flowchart during free running simulation because the program is
executing so quickly that actually showing it's current position would be impossible.

To interact with a simulation

When the simulation is running you will see Visual Designer in its debugging layout, with all the
interactive elements aligned on the right hand side of the application. These will almost certainly
be a mix of indicators (led's, LCD's, etc.) that provide you with feedback and actuators (buttons,
switches, keyboards, etc.) that you click to provide stimuli to the simulation. Here's an example
where we adjust an infra-red proximity sensor:

Visual Designer

59

 Start the Simulation

 Move the mouse over the adjustment arrows on the sensor.

 Click up or down as required.

Clicking on the IR sensor adjustment controls mimics the behaviour of a physical test.

You can just as easily switch to the schematic tab and interact on that screen if you prefer.
However, it's handy to have everything in one place and particularly so during a debugging
session when you want to view hardware while single stepping your flowchart.

 The virtual terminal is slightly different as you can simply click and type when the
simulation is running. This means you can use the terminal as a command interface to
your program which has many, many uses.

Debugging Skills
To set a software breakpoint
Right click on the flowchart block either before simulation or when the simulation is paused and
select the toggle breakpoint command from the context menu.

To single step debug your flowchart
When the simulation is paused, use the step commands at the top of the window or the F10 and
F11 shortcut keys to single step through your flowcode.

LABCENTER ELECTRONICS LTD.

60

 To watch the program flow it is often helpful to try a simulation run by pressing pause and

then the animated single step command from the Debug Menu. This is slow enough that
you can see the path your program executes through decision blocks and is often a quick
way to spot a problem.

To step to a block on the flowchart
To step to a specific block on the flowchart, first pause the simulation, then right click on the
block and select the Step to command from the context menu.

To set a timed breakpoint
It's occasionally useful to pause a simulation after a period of time rather than on a particular
flowblock. You can do this by selecting the Run Simulation with Timed Breakpoint command
from the Debug Menu.

To set a hardware breakpoint
You can also set a breakpoint on a hardware condition as opposed to a software condition. The
procedure is:

1) With the simulation stopped switch to the schematic capture tab.

Visual Designer

61

2) Place a voltage probe on the wire of interest.

 Terminals with the same name are considered connected by an invisible wire. It is a

simple way to keep shields and breakouts self-contained and not have wires criss-
crossing all over the screen.

3) Edit the probe and configure the Real Time Breakpoint settings.
4) Run the simulation

To add a variable to the watch window
The watch window is the only debugging window available during a free running simulation. You
may therefore choose to add a program variable to the watch window in order to monitor the
value as the program executes. To do this:

1) With the simulation paused, open the watch window from the Debug Menu. By default,
the window will dock beside the variables window.

LABCENTER ELECTRONICS LTD.

62

2) Switch to the variables window, right click on the variable of interest and select the 'Add
to Watch Window' command.

3) Switch back to the Watch Window and run the simulation.

 Variables are identified in the Watch Window by address. If you change your program
between simulation runs there is a chance that the compiler will assign a different
address to the variable and you will not be monitoring the variable on subsequent
simulation runs. This can be extremely confusing and it's best to remove and re-add the
variable when debugging after programming changes.

To add other items to the watch window
The watch window is simply a monitor on memory so you can add AVR registers or other
program locations. For example, to add a register:

Visual Designer

63

1) With the simulation paused make sure the Watch Window is open from the Debug
Menu.

2) Right click on the Watch Window and select add item by name.

3) Select the register you want to watch and add it.

LABCENTER ELECTRONICS LTD.

64

The process is very similar when adding memory locations by address.

To set a conditional breakpoint
A conditional breakpoint (a watchpoint) is where you set a breakpoint to occur when a preset
condition is met on an item in the watch window. It is often under used as a debug tool - for
example, it is the perfect way to pause the simulation every time a timer overflows. To set a
watchpoint condition:

1) Use the methods described above to add either a variable or a register to the watch
window.

2) Right click on the item in the Watch Window and select Watchpoint Condition from the
context menu.

3) Configure as required.

4) Run the simulation.

There is an option on the dialogue to specify whether the watchpoint is a Global Break
Condition. This just determines whether the simulation suspends when any item expression is
true, or only when all watchpoints are true.

To open a debug window
In addition to the source, variables and watch windows there are a host of additional debug
windows that we encourage users to explore. After all, the more familiar you are with the
available tools the better at finding problems you will become and the debugging toolset in
Proteus is unparalleled. Often, you can even open debug windows on the shield peripheral
models as well as the processor model. The process is:

1) Pause the simulation.
2) Launch the debug window you want from the Debug Menu.

Visual Designer

65

 If you find yourself with a very busy screen you can close debug windows and re-open
them when needed from the Debug Window. Additionally, with the exception of the Watch
Window, they will all disappear during free running simulation.

RESOURCE FILES & DATA STORAGE

Introduction
Visual Designer includes a very powerful yet simple storage model. This takes the form of
resource files which can be added to the current project directly from the Project menu or via
the context menu in the Project Tree. Resource files can be anything from a text file to a picture
to an audio clip.

How it Works
It is very common to have a shield containing both an SD Card and other electronics for using
the contents of the SD Card. Obvious examples include the TFT shield which can render
pictures stored on the SD card and the Wave shield which can play WAV files stored on the SD
Card. Like everything else in Visual Designer the process for working with these shields is fairly
straightforward:

LABCENTER ELECTRONICS LTD.

66

1) Add the shield containing the resource file (e.g. Wave shield, TFT Shield)

1, right click and on Peripherals, 2, Add Peripheral, 3, Select Peripheral.

2) Check that the SD Card image size is big enough for your intended purposes. Clearly, the SD
Card image size for wave files needs to be larger than that for pictures.

Change the size to cope with what you are loading. i.e. a WAV file will be larger than an image

file.

 In software, Proteus works some magic here and will create a FAT image for you of the
correct size. If you are programming the real hardware you'll need to make sure you have
a FAT16 or FAT32 SD Card of a suitable size in the SD Card slot of the shield before you
hit the program button!

Visual Designer

67

3) Add the resource file(s)

 Be careful with the naming of resource files. The Arduino SD stack by default supports
only 8.3 filenames in order to support FAT16 cards. This means that the namestem must
be 8 characters or less and the extension must be 3 characters or less. For example, a
picture called ProteusLogo.bmp will not load whereas renaming it to logo.bmp or
image.bmp will work fine.

4) Drag and drop the resource file into your program. Visual Designer will automatically:

 Detect a destination IO routine for the resource (e.g. DrawBitmap() or Play())

 Set the source for the routine to be the resource.

 If you add a resource file there must be either an SD Card in an included shield or an
SD Card breakout peripheral otherwise you have no place to store the resource in
hardware !

The Filestore
Sometimes you just need to store and manipulate data in your program. The filestore gives you
this capability. To use the filestore:

1) Add the resource(s). This is the data being stored (e.g. text file).

LABCENTER ELECTRONICS LTD.

68

2) Add the SD Card peripheral. This is the filestore.

3) Use the methods on the filestore (storage data blocks) to open, read and otherwise
manipulate the data in your program.

When you program the physical hardware the programmer will handle the transfer of the
resources to the SD Card (as long as there is a suitable SD card in the hardware!).

PROGRAMMING THE PHYSICAL HARDWARE

Introduction
This topic discusses how to program the Arduino hardware from inside Proteus Visual Designer
so that you can see your projects working in the real world.
For technical support or problems with programming please refer to either the troubleshooting
guide below or to the following Arduino resources:

Visual Designer

69

 https://www.arduino.cc/en/Main/FAQ

 https://forum.arduino.cc

 https://forum.arduino.cc/index.php?topic=261445.0

A Quick Guide to Programming
For convenience, Proteus Visual Designer includes an interface to the Arduino AVR
programmer. To program your hardware from inside Proteus you will need to :

1. Make sure you have the Arduino drivers installed. If you don't you can install them from the
Labcenter Program Group or by installing the Arduino IDE from their website.

Installing Drivers from the Labcenter Program Group in the Start Menu.

2. Go to the Project Settings dialogue

Launching the Project Settings Dialog in Visual Designer

3. Specify the programmer (AVRDUDE) and the board (eg. UNO)

https://www.arduino.cc/en/Main/FAQ
https://forum.arduino.cc/
https://forum.arduino.cc/index.php?topic=261445.0

LABCENTER ELECTRONICS LTD.

70

Specify the Programmer.

4. Specify the correct Interface based on the physical hardware you have connected.

Specifying the Interface.

5. Plug in the hardware, check device manager and enter the COM Port that your PC is using
for the USB here. Refer to the instructions below if you are unsure what to select

Visual Designer

71

Set the Correct COM Port.

6. Compile your program and press the program button to transfer to the real hardware

Build and Program the Hardware.

You should receive the following message:

Completed Upload to Hardware.

The Controller Dialog
Apart from the basic programming options there are a number of additional options on the
dialogue form which are discussed in full below.

Launch the Project Settings Dialogue Form.

Processor, Family and Controller
The Processor, Family and Controller fields are set when you create the project and will be
automatically populated for you in this dialogue form.

LABCENTER ELECTRONICS LTD.

72

Processor, Family and Controller Options are preset when you create the project.

Embed Files Option
The Embed Files Option keeps all source and debug files inside the .PDSPRJ file container.
This avoids common problems with relative paths to libraries and files as well as making the
project easily portable. We do not recommend turning this option off without good reason.

Arduino Board Option
The Arduino board option is a string which is passed to, and used by the Arduino compiler and
linker to identify the processor on the board. Do not change this option unless you are confident
that you know what you are doing.

Clock for Delays Option
The clock for delays option is basically the processor clock frequency. For simulation, this is
halved to 8MHz to ensure good performance even on modest computers. For the real hardware
it needs to be changed to 16MHz but there are two ways to do this.
We recommend that you leave the value in the field alone. Each time you upload you will get a
message explaining the discrepancy and Visual Designer will then program the real board with
the correct 16MHz clock. This option give the best of both worlds as you will simulate with an
8MHz clock and program with a 16MHz clock.

Leave the clock option alone for best simulation performance while maintaining correct

hardware compilation.

If you prefer, you can change the value in the field to 16MHz. This will be correct for the real
hardware but may impact simulation performance.

Visual Designer

73

Change the clock for correct hardware compilation at the expense of degraded simulation

performance.

Programmer Option
The programmer field should be set to the AVRDUDE programmer. If this is not
available/installed then you can easily get it by installing the Arduino IDE from their website.

Interface Option
The interface field should then be set according to the real hardware (e.g Arduino Uno for the
Uno board).

LABCENTER ELECTRONICS LTD.

74

COM Port Option
The COM port field is likely to cause the most confusion. This is determined by your PC when
you connect the Arduino hardware to the computer and it is vital that you provide the correct
port number in this field. The easiest way to make sure you have the correct number is to

a) Open Device Manager.
b) Plug in the Hardware
c) Make a note of the COMx number that appears and select it in the Port field.

Port Speed Option
The Port Speed or baud rate option is defined in the Arduino datasheets (e.g. 115200 for the
Arduino Uno) and should not be changed unless you are sure that you know what you are
doing.
Resource Uploader
Finally, the Resource Uploader file is used by Labcenter to automatically transfer Visual
Designer resources such as WAV files and Bitmaps to the SD card. You should not modify this
field.

Visual Designer

75

Troubleshooting Guide
Program Button is Disabled
Problem
This happens when the programmer is not installed or set.

Solution
Plug the USB cable in to the board and in to the PC. Make sure that the board has power (LEDs
will light up on the board). Visual Designer does not automatically detect that a board has been
plugged in so the Upload icon may still be greyed out. Click on the Project Settings icon:

We need to let Proteus know which programmer we wish to use. In this case it is the AVRDUDE
If there is nothing listed you will need to install Arduino IDE from:
https://www.arduino.cc/en/Main/Software

Programming takes a long time and then reports multiple errors
 You can stop a build or program at any time by clicking on the Stop Build icon on the

toolbar

There can be several different causes for this...

Cause 1
Problem
The wrong COM port has been selected. Go back to the Project settings and select the correct
COM port.

https://www.arduino.cc/en/Main/Software

LABCENTER ELECTRONICS LTD.

76

Solution

1. Making sure the board is plugged in
2. Open the Windows Device Manager
3. Select 'Windows Device Manager > Ports (COM & LPT1) > USB Serial Device (COMx)'.
4. Use whatever COM port number is stated there.

Cause 2
Problem
Incorrect Port Speed.
Solution
Have a look on the data sheet to find out what the Port Speed should be and in the project
Settings form, change it to be the correct number (Generally 115200).

Clock for Delays Error
Problem
You get the following error messages:

Visual Designer

77

This will generally be because the clock speed / 'Clock for Delays' value on the board for this
particular variant is different than that of the program. In the error message in the output
window, it will show the 'set' value in the in the Project Settings dialog, and the 'expected' value
required by the board. The software will compile the code with the 'expected' and upload the
program. But it will not change it in the settings, so this error will always appear every time the
Upload button is pressed.

Solution
This is not necessarily a problem. Indeed, for good simulation performance on modest
computers it is almost essential that the clock speed for simulation is different from the clock
speed of the real hardware. However, if you do want to change the field to be consistent you
can do so by going to to the Project Settings dialog and set the Clock For Delays to be the
'Expected' value or read the datasheet for that variant to find out what the clock speed should
be..

ELF File not found
Problem
There is no compiled firmware to upload
Solution
Compile the firmware via the build button and then try again.

LABCENTER ELECTRONICS LTD.

78

 CONFIGURING RASPBERRY PI

Introduction
Unlike the Arduino, the Raspberry Pi needs to be configured to work with Proteus before it can
be programmed. This is normally a one time configuration but can be quite involved. There are
three main stages:

1) Prepare the SD Card.
2) Find the Raspberry Pi.
3) Configure the Raspberry Pi for use with Proteus.

Preparing the SD Card
Before you start with your Raspberry Pi you will need a copy of Raspbian installed on an SD
card. If you don’t know how to do this there is a link below which will walk you through it.
https://www.raspberrypi.org/downloads/raspbian/

Download Raspbian onto an SD Card.

Visual Designer

79

 Proteus will work with both Raspbian and Raspbian Light depending on your preference
however Raspbian Light will boot up much faster.

Copying Files
Now that you have Raspbian on an SD card you’ll need to open it on your main computer. Don’t
plug the SD card into the Raspberry Pi yet. Instead, remove it and re-insert it into your
computer. Once you open the SD card in your computer you should see a list of files like this.

SD Card Files on your computer (*Not* the Raspberry Pi)

Now collect all the files from the drivers directory of your Proteus installation:
..\VSM Studio\drivers\RaspberryPi\Configure
And insert them into the SD card. If you’re not using ethernet you will need to edit
wpa_supplicant.conf which will allow you to connect to the network on bootup. Simply input the
network name and password and the Raspberry Pi will connect on bootup.

Also at this stage edit the configure.sh file and provide a unique hostname for the Raspberry Pi.

LABCENTER ELECTRONICS LTD.

80

Enter wireless access details in the wpa_supplicant file.

Files to be copied onto the SD Card from your computer.

Now safely eject the card from the computer.

Finding the Raspberry Pi
You will need to find the IP address of your raspberry Pi. There are numerous ways to do so,
including the following.

First, installing a free port scanner. This saves time and means you don’t have to plug in your
Raspberry Pi to a screen and keyboard. So visit the Advanced Port Scanner website.
https://www.advanced-port-scanner.com/

Now follow their instructions and install Advanced Port Scanner. The Download button is on
their main page. Note this software is free.

Once installed power on the Raspberry Pi.Raspian light will boot faster than normal Raspian as
there is no GUI to load. Then use Advanced Port Scanner to look for your Raspberry Pi.

https://www.advanced-port-scanner.com/

Visual Designer

81

You will most likely have lots of devices on your network. You will be looking for a device with
name raspberrypi and manufacturer Raspberry Pi Foundation. Find the IP which in this case is
192.168.100.10. Do not turn off the raspberry Pi.

Configuration of the Raspberry Pi
Method 1: Inside Proteus
Create a blank Raspberry Pi Project in proteus and open project settings. Change Programmer
from None to RPISSH and enter the IP address into the Host section.

LABCENTER ELECTRONICS LTD.

82

Now Upload the blank project to your Pi. A dialogue box will pop up asking for confirmation to
complete the Raspberry Pi configuration, press OK to continue (Picture may be required). This
section will take a while as it downloads necessary libraries and sets it’s self up Once complete,
the Raspberry Pi will reboot and connection will be lost giving Error Code: -1

Wait a moment for the Raspberry Pi to reboot and the process is complete.

Your raspberry pi will now appear in Proteus every time you boot it up and advanced port
scanner is no longer needed.

Now if you go into program settings the raspberry pi will be there with whatever name you
provided in the configure.sh file.

Visual Designer

83

Method 2: PuTTY
You should be able to work with PuTTY to talk to the Raspberry Pi without plugging in a
keyboard, mouse and screen. If you are using Raspbian and are plugging in a keyboard and
mouse you may not need this step.

This link will take you to PuTTYs main site and will talk you through the download steps.

https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md

Connect PuTTY to the Raspberry Pi and write:
sudo /boot/configure.sh

This may take a while to install everything but once it has finished you will need to reboot the
Raspberry Pi.

Method 3 : Keyboard and Mouse
If you are instead using keyboard and screen open the command line which is called Terminal
in Raspbian. Now write:
sudo /boot/configure.sh

This may take a while to install everything but once it has finished you will need to reboot the
Raspberry Pi.

1

ARDUINO TUTORIALS

Introduction

It's remarkably simple to design and create electronic projects with Visual Designer. These short
tutorials each cover a separate project and include various different techniques and methods in
the project design.

Arduino Tutorials
Tutorial 1 : Flashing an LED (Grove).
Covers project creation, adding peripherals. basic flowchart programming and Proteus
simulation.
Tutorial 2 :Nightlight (Grove)
Includes grove module configuration, decision making flowcharts, interactive simulation and
basic debugging.
Tutorial 3: Data Storage (AdaFruit Shield)
Includes resource handling, adding shields, taking measurements and programming physical
hardware.
Tutorial 4 : Motor Control (Adafruit Shield)
Includes programming with loops, adding and calling sub-routines and using the clipboard..
Tutorial 5: LED (Schematic Design)
Includes schematic entry for the electronics, using interrupts and CPU methods in Visual
Designer.

LABCENTER ELECTRONICS LTD.

2

Tutorial 1 : Flashing LED's

Introduction
This tutorial starts when you open Proteus and finishes with the flashing of an LED in a Proteus
simulation. The goal here is to cover the basics with the most simple of projects.

New Project Wizard
Visual Designer is integrated into the Proteus Design Suite and so we start our Visual Designer
Projects from the Proteus Home Screen. The easiest and best way to create a Visual Designer
Project is, unsurprisingly, through the New Project Wizard.

New project from the Home page of Proteus

The first page allows you to select the name and destination of your project.

The second screen of the wizard allows us to select which size of schematic sheet we want.
The default is fine for all but the largest of projects and is certainly OK for the flashing of an
LED.

Arduino Tutorials

3

If your license includes Proteus PCB Design the next screen will offer you an option to create an
accompanying PCB with the project. It's not necessary for our purposes and beyond the scope
of this document so we'll leave the option disabled.

 You may not see this screen at all if your license key doesn't include PCB Design.

Next up is the firmware screen and it is here that we really define our Visual Designer project.
First, we change the radio buttons at the top to the option for Flowchart Project and then we
select the Arduino family and either the Arduino Uno or the Arduino Mega from the controller
combo box.

LABCENTER ELECTRONICS LTD.

4

 The firmware selection refers to a Proteus VSM simulation project rather than a Visual

Designer flowchart project.

Finally, you will be presented with a summary page of your configuration.

After you exit the dialogue form the project will be created and you will see both a skeleton
schematic with the Arduino processor placed and a skeleton chart project with the familiar
Setup and Loop routines on the Editing Window.

Arduino Tutorials

5

 The standard Arduino Sketch includes two functions, namely Setup and Loop. The Setup

function is intended for one time initialization and the Loop function provides a place for
the main program loop. Visual Designer for Arduino uses the same paradigm and you
must have at least one of these two constructs in your flowchart for it to compile. If
you have deleted them, just add an event block and name it appropriately.

Now we are ready to start designing our project.

Adding a Peripheral
The first thing to do is to add the peripheral(s) for the project. These can be Arduino shields or
just little Grove sensors. The Grove system consists of an Arduino shield with lots of 4-pin
headers into which any number of sensors, buttons and LED's can be plugged. This makes it
very flexible and ideal for experimenting.

We'll be adding a Grove LED. In Visual Designer, we right click on the Project Tree and select
the Add Peripheral command. Next, switch to Grove and select one of the LED's.

LABCENTER ELECTRONICS LTD.

6

Repeat the process to add a Grove button. If you then switch to the schematic tab you will see
that the 'virtual hardware' has been autoplaced for you.

To avoid clutter on the schematic, connections are made on the schematic by giving terminals
the same name. Any terminals with the same name can be thought of having an invisible wire
between them

In real hardware, this equates to connecting up the Grove button and Grove LED to the shield
and attaching the shield to the Arduino Uno.

Arduino Tutorials

7

Grove LED and Grove Button connected onto the Arduino UNO.

Note that you must plug the peripherals into the same connectors on the Grove shield as they
are designated on the Proteus schematic. You must also ensure that you don't have two
peripherals with the same connector ID on the schematic; if you do, you need to switch to the
schematic and change the ConnectorID on one of the peripherals.

LABCENTER ELECTRONICS LTD.

8

Drag and Drop Flowchart Design
Back in Visual Designer, you'll notice that the Project Tree now has two entries under the
peripherals section.

The beauty of Visual Designer is that you can expand the peripherals to find a list of methods.
These methods are the primary way in which we interact with the hardware. For example, drag
and drop the 'On' method of the LED into the loop routine.

To test this simply press the play button. The program will compile, the simulator will start and
the LED will turn on. You can see this either via the Active popup at the right of Visual Designer
or by switching to the schematic tab.

Arduino Tutorials

9

Press stop to exit the simulation and we'll extend our program to switch the LED on and off with
a button press. You'll notice that the button has no methods in the project tree.

The only sensible information we need from the button is to know whether it has been pressed
and for that we have what we call a 'sensor function'. A sensor function returns either TRUE or
FALSE depending on whether the basic peripheral function is true or not. For example, the
sensor function for a button will return TRUE when the button is pressed and FALSE if it isn't.
Similarly, the sensor function for an LED will return TRUE when the LED is on and FALSE when
the LED is off. Place the sensor function for the button by dragging and dropping from the
button itself onto the loop function of the flowchart.

You will notice that it appears as a decision block. Sensor functions always return TRUE or
FALSE and a decision block allows us to split our code into two conditional paths. Your loop
routine should currently look something like the following.

LABCENTER ELECTRONICS LTD.

10

We are constantly testing the button to see if it is pressed and we are turning on the LED if it is.
However, we still need to tell the program what to do if the button is not pressed. We want the
LED to turn off so lets drag and drop that method into space alongside the ON operation.

Now, we need to wire from the decision block to the top of the OFF command. To place a
flowline click on an output node (the decision block), move the mouse to an available input node
(top of the OFF routine) and click the mouse again.

Arduino Tutorials

11

Similarly we need to connect the flow from the bottom of the OFF command back into the main
loop.

Your program should now look like the following

Note that the decision block has two labels indicating which code path is followed if the decision
resolves to TRUE (YES) and which code path is followed if the decision resolves to FALSE
(NO). If these are the wrong way around you can switch them by right clicking on the decision
block and selecting the swap command from the context menu.

Having made this change, our program now turns the LED off when the button is down and on
when the button is released. To compile and test, first press the play button and then use the
mouse to press the button down.

LABCENTER ELECTRONICS LTD.

12

You can experiment further here with changing the decision or swapping in the toggle method.
You might also find it useful to add a delay.

For more information, read Tutorial 2.

Arduino Tutorials

13

TUTORIAL 2: LUX SENSOR

Introduction
In this tutorial we are going to use a couple of Grove sensors and an LED to design a mini
nightlight. Project setup is covered in the first tutorial so we'll assume that you have a blank
Arduino Uno project in front of you.

 This tutorial is also covered by a short movie on the Labcenter Youtube Channel

Adding Hardware
We'll use the Grove infra-red proximity sensor and the Grove luminance sensor along with a
Grove LED. All of these can be picked via the Add Peripheral command on the Project Menu.

http://www.youtube.com/channel/UCFNnl5S532GMtwXJUYRo_wQ

LABCENTER ELECTRONICS LTD.

14

After they have been added to the project, you will see the methods for controlling the
peripherals in the Project Tree and the 'virtual hardware' for the peripherals placed for you on
the schematic.

 Note that the connectors are both labeled A0 and will need to be manually changed to be
A0 & A2.

It is vitally important to configure the Grove connectors properly and this is often not as simple
as it first appears. Let's take an example:

Arduino Tutorials

15

The real proximity sensor requires only three wires with the fourth left NC. Note therefore that,
when plugged into socket A0 the sensor is connecting to analog pin A1.

This is fine, except if you then plug the luminance sensor into socket A1. The luminance sensor
will use analog pin A1 on socket A1 and therefore clash. You should plug this sensor into socket
A2.

Golden Rule
Look closely at the Grove board to see the connections and double check against the sensors
for conflicts.
The sockets include connections through to two Arduino IO pins and there is a pin overlap. For
example:

- Socket A0 can use pins A0 and A1
- Socket A1 can use pins A1 and A2
- Socket A2 can use pins A2 and A3.
- etc.

LABCENTER ELECTRONICS LTD.

16

Digital sockets are exactly the same.

Our configuration for this project is therefore proximity sensor in socket A0 and luminance
sensor in socket A2. The LED can be in any digital socket we like.

Arduino Tutorials

17

Designing the Program
In our nightlight mock up we are looking for our LED to light when the following are true:

 It's is dark.

 Someone is nearby.

These are both decisions on the flowchart. Start by drag and drop the readLuminance() method
onto the loop routine of the chart.

This sensor returns a lux value between 0 and 1000, with 0 being pitch black and 1000 max
light. Let's then use our result in a decision block and set our initial test value to around 100.

 The datasheet for the APDS-9002 photo sensor used in this Grove module provides data

on lux values.

LABCENTER ELECTRONICS LTD.

18

See Also: https://www.seeedstudio.com/Grove-Luminance-Sensor-p-1941.html

For the proximity sensor, we want to read a distance so drag and drop into the top of the loop.

The proximity sensor can detect up to 80cm but we'll set our initial test to 20cm.

See Also: http://wiki.seeedstudio.com/Grove-80cm_Infrared_Proximity_Sensor/

Since, we need both conditions to be true for the LED to turn on, make sure that the second
decision is on the YES branch of the first decision.

Next, drag and drop the led on method at the bottom of the YES branch.

https://www.seeedstudio.com/Grove-Luminance-Sensor-p-1941.html
http://wiki.seeedstudio.com/Grove-80cm_Infrared_Proximity_Sensor/

Arduino Tutorials

19

Finally, place the LED off method to the right of the main loop beside the LED on method.

Since we want the LED to turn off if either condition is false we can wire both NO branches from
the decisions to this method.

Finally, connect the bottom of the NO program branch back into the main program loop.

LABCENTER ELECTRONICS LTD.

20

Simulating and Testing
To test our program, all we need to do is press the play button and then adjust the distance
display on the proximity sensor and the lux display on the luminance sensor.

The LED should turn on when the distance value is less than 20 and it's a little cloudy.

Arduino Tutorials

21

Pause the simulation and set a breakpoint on the LED off method.

Press play again to run the simulation and change either the distance or the light until the
breakpoint triggers

LABCENTER ELECTRONICS LTD.

22

You'll notice that both our variables are available in the variables display.

Comparing these values to the tested decisions will tell us which condition has failed.

As you single step via the icons at the top you'll notice the LED turn off.

1, Single step once. 2, Notice the END block is highlighted. 3. LED has turned off

Arduino Tutorials

23

Programming
Since everything seems to working in good order, the remaining task is to plug in the Arduino
and program the real hardware. The process here is:

1) Plug the Grove sensors into the Grove baseboard in the same connectors as on the
schematic. See also the golden rule discussed earlier.

2) Connect the baseboard to the Arduino and connect the Arduino to the PC. Until you
have something like so:

3) Click the program upload button in Visual Designer.

4) Test in hardware.

LABCENTER ELECTRONICS LTD.

24

 If the programming fails, click on the project settings icon (next to the icon shown above)
to make sure the COM port and settings are correct.

Arduino Tutorials

25

TUTORIAL 3: DATA STORAGE

Introduction
This tutorial introduces data resources and the storage model. We'll be creating a program to
display a bitmap on an SD card onto the TFT display, although the same principles would hold
true for audio (.WAV) files on the Wave Shield.

It is assumed as this stage that you have worked through the other tutorials and are familiar with
general placement and connecting of flowblocks.

You can watch a short movie of this tutorial on the Labcenter Youtube Channel.

Setup
We'll set up this project in the usual way via the new project wizard and configure it as an
Arduino Uno flowchart project.

Next, we'll want to add our peripheral shield. We right click on the Project Tree and add the
Adafruit TFT shield. Note that this is not a module for the Grove Shield but a completely
different shield which contains both an SD card and a TFT display.

http://www.youtube.com/channel/UCFNnl5S532GMtwXJUYRo_wQ

LABCENTER ELECTRONICS LTD.

26

The last thing we need to do is add the resource. In our case this is the picture that we want to
store in the SD card and display on the TFT display. We do this via the Add Resource
command on the right click context menu.

 Be careful with the naming of resource files. The Arduino SD stack by default supports
only 8.3 filenames in order to support FAT16 cards. This means that the namestem must
be 8 characters or less and the extension must be 3 characters or less. For example, a
picture called ProteusLogo.bmp will not load whereas renaming it to logo.bmp or
image.bmp will work fine.

Designing the Program
Now that we have all the pieces we need, the remaining job is to create the program. This could
hardly be easier in Visual Designer. First, drag the fillSreen() method onto the top of the loop
and set the fill colour to black.

Next drag and drop the bitmap resource into the loop routine. Visual Designer knows that the
only sensible target for the resource is the TFT display and it knows the method for rendering
the resource is drawBitmap() and so it will automatically configure the flowblock for you.

Arduino Tutorials

27

Now you need to edit the Image and set the xPos and yPos to be 0

Press the play button to compile and run the simulation.

LABCENTER ELECTRONICS LTD.

28

If necessary, you can configure the rotation in the setup routine via the same drag and drop
method.

Taking Measurements
One of the nice things about Visual Designer is that it contains the Proteus schematic. This
means that, if you want to, you can look a little deeper at what is happening in your design. For
example, in our example the SD card is connected to the processor on the SPI bus and so we
can place and wire a protocol analyzer to examine the SPI packets. In Proteus, all signals and
waveforms travel through the wires, and two terminals with the same name have an 'invisible
wire' between them.

Two terminals with the same name are connected together as though they were wired.

Given this, the easiest way to connect the SPI terminal is to place one and wire it to terminals
with the same names as the other SPI lines. The alternative is to connect up to existing wires.

Arduino Tutorials

29

Placing a SPI Analyser:

Wiring SPI Analyser:

Next, set a breakpoint in the drawBitmap() command as this is where the majority of the SPI
transmissions happen.

LABCENTER ELECTRONICS LTD.

30

Now, when we run the simulation we'll see some initialisation chatter on the SPI bus until we hit
our breakpoint. When we single step, we will see an awful lot of data being moved from the SD
card corresponding to the bitmap being read by the processor. You can drill all the way down to
bit level on any packet if need be.

 The same basic process will work with any instrument (Oscilloscope, Logic Analyser, I2C
Analyser etc.).

 Attaching instrumentation is essential for analysis but will slow down simulation. It's worth
deleting instruments when a debug session is complete.

Programming Hardware
When we are finished development we can easily program the physical hardware. First, connect
the Adafruit TFT shield to the Arduino Uno and make sure a compatible SD card is inserted in
the shield. Then, connect to the PC and then simply press the program button.

If the upload doesn't start, use the settings dialogue to specify the COM port that you have
connected to and try again.

You should see an upload complete message in the simulation log and your TFT should be
displaying the picture.

This programming process is twofold. First, the resource is written to the SD card and then the
firmware program is sent to the AVR microcontroller.

 They physical SD Card must be FAT16 or FAT32 and big enough to hold the resource file
that will be programmed onto it.

Arduino Tutorials

31

TUTORIAL 4 : MOTOR CONTROL

Introduction
This tutorial shows how you can easily control both DC motors and Stepper motors with Visual
Designer. We'll do this using the Arduino Motor Shield V1 R3.

Front View Rear View

See Also: https://www.arduino.cc/en/Main/ArduinoMotorShieldR3

 You can experiment with Servo motors using the Grove Servo peripheral and you can
also use BLDC motors by drawing on the schematic.

DC Motor Control
Start by creating a new Visual Designer Project and then Add the Arduino Shield with DC
Motors in the normal way.

https://www.arduino.cc/en/Main/ArduinoMotorShieldR3

LABCENTER ELECTRONICS LTD.

32

Note that under the Motor Control heading there are actually two shields. These are identical
except that the first has the board configured and populated with two DC motors and the second
is configured and populated with one stepper motor. In the real hardware of course you would
need to configure and populate the shield manually according to which project you were
programming the Arduino with.

You should notice that in the Project Tree you now have two motors with associated methods.

Let's write a small program to drive the motors in opposite directions. The first thing we want to
do is initialise a variable for the speed of the motors so drag and drop an assignment block into
the Setup routine (we only need to do this once).

Edit the block, create a new variable and assign a value.

Now, let's drive the first motor forwards. Drag and drop the run methods into the loop routine.

Arduino Tutorials

33

Edit the block, set the direction forwards and assign the speed to our variable.

Repeat the process for the second motor to send it spinning backwards.

LABCENTER ELECTRONICS LTD.

34

Next, we'll add a sub-routine to stop the motors. Drag and drop an Event block into an empty
place, edit the Event block and give it a sensible name.

Now, drag and drop the stop routine for both motors into the sub-routine we've just added.

Finally, drag and drop a subroutine call block into the main loop and edit it to call our routine.

Arduino Tutorials

35

To see this in action press the pause button and then single step the code using the Step-Into
icon at the top of the source window. You'll notice that the code executes through the sub-
routine and then returns to the main loop.

We have most of the pieces of our program in place but we are starting and stopping the motors
very quickly which isn't going to help them build momentum. Much better to add a delay in the
drive phase and a similar time delay in the stop phase. Again, this is drag and drop from the
flowblock menu onto the chart routines.

If you run the simulation now you can monitor the drive and spin down loops via the time display
on the status bar

You could also pause the simulation, set a breakpoint and step the code. Unlike the real
hardware the motors won't lose momentum when you are at a breakpoint - a real advantage to
debugging in software.

LABCENTER ELECTRONICS LTD.

36

For more advanced analysis you could place and wire an oscilloscope on the schematic and
watch the PWM waveforms drive the motor.

As always, you can program the physical board at any time via the upload button.

Stepper Motor Control
For the stepper motor we are using the same hardware shield (Arduino Motor Shield V1 R3) but
configured for a single unipolar stepper motor. Start a new Visual Designer project and bring in
the virtual shield via the Add Peripheral command.

Arduino Tutorials

37

We'll design a small program to step the motor in one direction and then reverse direction and
step backwards. Our first job is to define the speed which we can do by dragging the setSpeed()
method into the Setup routine.

In order to step a set number of times we want to use a loop construct. Drag and drop one onto
the Main (Loop) routine and edit the block.

LABCENTER ELECTRONICS LTD.

38

We'll use a For-Next loop here so add a variable for count, initialise to zero and let's go round
the loop 12 times.

Now, drag the step() method of the motor inside our loop - you'll notice the colour change to
indicate it's part of the loop construct.

Arduino Tutorials

39

Edit the flowblock and make the number of steps 4 so that we get sensible movement, set the
direction to forwards and the mode to interleave.

 Single Mode means single-coil activation, Double mode means 2 coils are activated at

once (for higher torque) and "interleave" mode means that it alternates between single
and double to get twice the resolution (but of course its half the speed). Lots more info on
this in various internet resources.

Add a modest delay after the step routine to allow the drive phase to complete before we iterate
the loop.

LABCENTER ELECTRONICS LTD.

40

That's the forwards motion in place. Driving the motor in the opposite direction is identical
except that we change the direction in the step routine. You can place a second loop and drag
methods in or we can just use the trusty copy and paste. Drag a box with the right mouse
around the loop and select copy from the resulting context menu.

Next, right click (or CTRL+V) to paste a second set of blocks.

Drag them into place underneath the first loop, releasing the mouse when the top node appears
with a dot.

Arduino Tutorials

41

Finally, edit the step method and change the direction.

That's it. Press play and watch the motor step forwards and backwards or pause, set a
breakpoint and single-step your program. Note that the counter variable is displayed in the
variables window which will tell you instantly how many more iterations of your loop remain.

LABCENTER ELECTRONICS LTD.

42

TUTORIAL 5: SCHEMATIC BREADBOARD

Introduction
So far in all of the tutorials we have used pre-existing Arduino shields or Grove modules for the
hardware. There is however nothing to stop us designing our own hardware directly on the
schematic. We will cover the basics in this tutorial with a button and an LED. Note however that
there are literally thousands of parts that can be simulated in the Proteus libraries. Start by
creating a new project with a schematic, no PCB and with Firmware for Arduino Uno using the
Visual Designer Compiler for Arduino.

This tutorial is also covered by a short movie on the Labcenter Youtube channel.

Drawing on the Schematic
There is a good deal of documentation on schematic drawing in the main Proteus help files so
we'll cover only in brief here. Our task is to draw the following circuitry on the schematic;

The three main steps are pick, place and wire.

Picking
To pick from the library select the 'P' button above the parts bin on the schematic. This presents
us with the library browser. We are only interested in those parts that we can simulate so start
by checking the box to filter the results.

http://www.youtube.com/channel/UCFNnl5S532GMtwXJUYRo_wQ

Arduino Tutorials

43

We will need an LED, a 220 Ohm resistor, a pullup resistor and a button, all of which we can
find by typing keywords at the top left of the dialogue form.

To pick a part into the parts bin, simply double click on the result.

 You may be asked if you want to replace the existing part. This will happen when you

pick a part already in the parts bin; for example, there is already an LED in the parts bin
because it's used in the Arduino Uno Shield.

Placing
To place a part, select it in the parts bin, left click once on the schematic, then drag into place
and left click again to drop.

If you need to rotate, you can do this with the plus and minus keys on the keyboard during
placement.

Place all of the parts approximately in position - something like the following:

LABCENTER ELECTRONICS LTD.

44

We can apply power and ground by selecting terminal mode and placing /rotating in the same
way as we did the parts.

Edit the power terminal and specify the correct voltage.

We'll also need a terminal to connect our button and our LED up to the correct pin on the
Arduino. We can use default terminals for this.

Arduino Tutorials

45

It is here that the hardware and the firmware designs start to merge. The best way to wait for a
button press in firmware is via a pin change interrupt. This means however that we need to
connect the button to a pin on the Arduino for which a pin change interrupt is available. On the
Uno we can use IO2 for this and can connect the LED to any available IO pin.

You want it to look like the one below (without the wires at this stage).

LABCENTER ELECTRONICS LTD.

46

Wiring
Wiring on the schematic is point to point. First, hover the mouse over a pin until the cursor turns
green and then left click

Next, move the mouse to the destination pin/wire until the cursor turns green again.

Left click the mouse again to complete the wire.

After wiring is complete your schematic should look like the following.

Arduino Tutorials

47

 Remember the two terminals with the same name on the schematic have an 'invisible
wire' between them so by wiring the button to a terminal called IO2 we have actually
connected it to the IO2 pin on the Arduino chip.

Designing our Program
Everything we have done so far is hardware design. The program design itself takes place on
the Visual Designer tab. Unlike our other tutorials we don't have any external peripheral
methods in the project tree so we will have to drive the electronics directly using the CPU
methods.

We'll start by dragging and dropping the pin change interrupt routine in to the Setup routine.

LABCENTER ELECTRONICS LTD.

48

Now, there are two available interrupt pins on the Uno but we need to select INT0 because we
wired the button onto IO2.

Similarly, we need to set the interrupt to trip on a falling edge because we wired the button to
pull low when pressed.

Now we need to handle the interrupt event. Drag and drop an event block onto the Flowchart
Editor and edit. Give a sensible name and then specify the trigger as INT0.

We are going to turn on an LED when the button was pressed so we need to write out a logic
high on one of the IO lines. Specifically, it needs to be IO9 because that's where we wired the
LED on the schematic.

Arduino Tutorials

49

Start by setting the pin to be an output pin. We can do this directly in the Setup routine by
dragging a pinMode routine on to the Flowline.

Then drag and drop the digitalWrite method into the interrupt handler, name the pin and set the
state to true.

That's it. Press play to simulate, switch to the schematic tab and press the button to test.

To bring an area of the schematic into the Visual Designer we need to specify it as an Active
Popup. To do this, stop the simulation, select Active Popup mode and drag a box with the left
mouse around the components of interest.

LABCENTER ELECTRONICS LTD.

50

This time, when you press play you can test in Visual Designer via the Active Popups. It's a
matter of preference in this case but, when debugging, it's often very useful to be able to see
the circuit at the same time.

You can easily add a few blocks to change the program into a toggle or continue with
developing the hardware on the schematic.
Your Flowchart project should finally look something like the following:

 Interrupts are really useful but be aware that in the Arduino environment you are limited in
what you can do. For example, attempting to write to an LCD inside an interrupt routine
will simply fail because the Arduino stack for writing to the LCD itself uses interrupts.
Caution is required.

1

RASPBERRY PI TUTORIALS

Introduction

It's remarkably simple to design and create electronic projects with Visual Designer. These short
tutorials each cover a separate project and include various different techniques and methods in
the project design.

Raspberry Pi Tutorials
Tutorial 1 : Flashing an LED (raw Pi).
Covers project creation, adding peripherals. basic flowchart programming and Proteus
simulation.

Tutorial 2 : Nightlight (w/ Grove).
Includes grove module configuration, decision making flowcharts, interactive simulation and
basic debugging.

Tutorial 3 : Motor Control (w/ rPi Hat)
Includes programming with loops, adding and calling sub-routines and using the clipboard..

LABCENTER ELECTRONICS LTD.

2

Tutorial 1 : Flashing LED

Introduction
This tutorial covers the basics of project creation, working with flowcharts, raspberry Pi
simulation and programming the real hardware. The actual goal of flashing the LED is kept as
simple as possible so that we can cover the end-to-end process. Working with more complex
peripherals and hats is covered in subsequent tutorials.

New Project Wizard
Visual Designer is integrated into the Proteus Design Suite and so we start our Visual Designer
Projects from the Proteus Home Screen. The easiest and best way to create a Visual Designer
Project is, unsurprisingly, through the New Flowchart Wizard.

The first page allows you to select the name and destination of your project.

Raspberry Pi Tutorials

3

Next up is the firmware screen and it is here that we really define our Visual Designer project.
First, we change the radio buttons at the top to the option for Flowchart Project and then we
select the Raspberry Pi family and either the RPi3 or the RPi3 + GrovePi Hat from the controller
combo box.

Finally, you will be presented with a summary page of your configuration.

LABCENTER ELECTRONICS LTD.

4

After you exit the dialogue form the project will be created and you will see both a skeleton
schematic with the Raspberry Pi processor placed and a skeleton chart project with the familiar
Setup and Loop routines on the Editing Window.

Raspberry Pi Tutorials

5

Now we are ready to start designing our project.

Adding a Peripheral
The first thing to do is to add the peripheral(s) for the project. These can be Raspberry Pi Hats
or just little breakout peripherals. The Raspberry Pi does not need a Hat to operate and you can
add peripherals which talk to the GPIO Pins Directly.

We'll be adding a Breakout LED. In Visual Designer, we right click on the Project Tree and
select the Add Peripheral command. Next, switch to Breakout Peripherals and select one of the
LED's.

LABCENTER ELECTRONICS LTD.

6

Add the Peripheral from the context menu command in VSM Studio

Double click on the LED to add it to the project.

Repeat the process to add a Breakout button. If you then switch to the schematic tab you will
see that the 'virtual hardware' has been autoplaced for you.

Schematic view with both LED and push button auto-placed.

Raspberry Pi Tutorials

7

To avoid clutter on the schematic, connections are made on the schematic by giving terminals
the same name. Any terminals with the same name can be thought of having an invisible wire
between them.

Terminals with the same name are considered connected together.

In real hardware, this equates to connecting the Breakout button and Breakout LED to the GPIO
Pins on the Raspberry Pi

Note that you must attach the peripherals onto the same GPIO pins on the Raspberry Pi as they
are designated on the Proteus schematic. You may need the pinout to see which GPIO pins go
where.

LABCENTER ELECTRONICS LTD.

8

GPIO pins on the Raspberry Pi

You must also ensure that you don't have two peripherals with the same terminal label on the
schematic; if you do, you need to switch to the schematic and edit the terminal labels on one of
the peripherals. Some pins may need unlocking.

If you have two terminals with the same name they will be connected ! Need to edit one and re-

assign to another GPIO line.

Flowchart Design
Back in Visual Designer, you'll notice that the Project Tree now has two entries under the
peripherals section.

Raspberry Pi Tutorials

9

The beauty of Visual Designer is that you can expand the peripherals to find a list of methods.
These methods are the primary way in which we interact with the hardware. For example, drag
and drop the 'On' method of the LED into the loop routine

Drag and Drop methods onto the program.

To test this simply press the play button. The program will compile, the simulator will start and
the LED will turn on. You can see this either via the Active popup at the right of Visual Designer
or by switching to the schematic tab.

LABCENTER ELECTRONICS LTD.

10

Run the simulation to test results.

Press stop to exit the simulation and we'll extend our program to switch the LED on and off with
a button press. You'll notice that the button has no methods in the project tree

Stop the simulation when finished.

The only sensible information we need from the button is to know whether it has been pressed
and for that we have what we call a 'sensor function'. A sensor function returns either TRUE or
FALSE depending on whether the basic peripheral function is true or not. For example, the
sensor function for a button will return TRUE when the button is pressed and FALSE if it isn't.

Similarly, the sensor function for an LED will return TRUE when the LED is on and FALSE when
the LED is off. Place the sensor function for the button by dragging and dropping from the
button itself onto the loop function of the flowchart

Raspberry Pi Tutorials

11

Drag the sensor function onto the flowchart

You will notice that it appears as a decision block. Sensor functions always return TRUE or
FALSE and a decision block allows us to split our code into two conditional paths. Your loop
routine should currently look something like the following.

We are constantly testing the button to see if it is pressed and we are turning on the LED if it is.
However, we still need to tell the program what to do if the button is not pressed. We want the
LED to turn off so lets drag and drop that method into space alongside the ON operation.

Now, we need to wire from the decision block to the top of the OFF command. To place a
flowline click on an output node (the decision block), move the mouse to an available input node
(top of the OFF routine) and click the mouse again.

LABCENTER ELECTRONICS LTD.

12

Similarly we need to connect the flow from the bottom of the OFF command back into the main
loop.

Your program should now look like the following.

Having made this change, our program now turns the LED off when the button is down and on
when the button is released. To compile and test, first press the play button and then use the
mouse to press the button down..

Raspberry Pi Tutorials

13

Programming the Hardware
 This section assumes that you have completed the initial configuration of the Raspberry

Pi.

LABCENTER ELECTRONICS LTD.

14

Here on the Left is a Raspberry Pi 3, and on the Right is the pinout for the GPIO Pins. The very
first thing you need to understand is the orientation. Both these images are oriented in the same
way. The top 2 pins are both power (Left pin is 3.3V and Right pin is 5V). You can find this
pinout on the raspberry pi website. Some of the Raspberry Pi I cases have the pinout engraved
into it making it very easy to find each pin. Failing that, you can use a template or make one
with a little bit of card to make life easier.

Raspberry Pi Tutorials

15

Engraved casing or simple template to identify lines on the header block.

LABCENTER ELECTRONICS LTD.

16

Now in our program we connected the LED to GPIO 10. Not to be confused with Pin 10 which is
GPIO 15. GPIO and Pin numbers are very different so make sure you connect the correct one.
Just like the schematic we've included a protection resistor to prevent he LED from getting
damaged by the current from the Raspberry Pi.

Here you can see we've used Male to Female wires connecting the Raspberry Pi to the
Breadboard.

Assuming all is correct your led should flash just like the project.

Raspberry Pi Tutorials

17

Tutorial 2 : Night Light (w/ Grove)

Introduction
In this tutorial we are going to use a couple of Grove sensors and an LED to design a mini
nightlight. Project setup is covered in the first tutorial however this time we will want to change
the controller to the RPI3 + GrovePi Hat.

Adding Hardware
We'll use the Grove infra-red proximity sensor and the Grove luminance sensor along with a
Grove LED. All of these can be picked via the Add Peripheral command on the Project Menu.

LABCENTER ELECTRONICS LTD.

18

After they have been added to the project, you will see the methods for controlling the
peripherals in the Project Tree and the 'virtual hardware' for the peripherals placed for you on
the schematic.

It is vitally important to configure the Grove connectors properly and this is often not as simple
as it first appears. Let's take an example:

The real proximity sensor requires only three wires with the fourth left NC. Note therefore that,
when plugged into socket A0 the sensor is connecting to analogue pin A1.

This is fine, except if you then plug the luminance sensor into socket A1. The luminance sensor
will use analogue pin A1 on socket A1 and therefore clash. You should plug this sensor into
socket A2.

Golden Rule
Look closely at the Grove board to see the connections and double check against the sensors
for conflicts. Unlike the Arduino the conflicts are not shown on the board and need to be
checked separately.

Raspberry Pi Tutorials

19

The sockets include connections through to two Raspberry Pi IO pins and there is a pin overlap.
For example:

 Socket A0 can use pins A0 and A1

 Socket A1 can use pins A1 and A2

 Socket A2 can use pins A2 and A3.

 etc

Digital sockets are exactly the same.

Grove Peripherals connected.
Our configuration for this project is therefore proximity sensor in socket A0 and luminance
sensor in socket A2. The LED can be in any digital socket we like.

LABCENTER ELECTRONICS LTD.

20

Designing the Program
In our Nightlight mock up we are looking for our LED to light when the following are true:

 It's is dark.

 Someone is nearby.

These are both decisions on the flowchart. Start by drag and drop the readLuminance() method
onto the loop routine of the chart.

This sensor returns a lux value between 0 and 1000, with 0 being pitch black and 1000 max
light. Let's then use our result in a decision block and set our initial test value to around 100.

 The datasheet for the APDS-9002 photo sensor used in this Grove module provides data

on lux values.

 See Also: http://wiki.seeedstudio.com/Grove-Luminance_Sensor/

For the proximity sensor, we want to read a distance so drag and drop into the top of the loop.

http://wiki.seeedstudio.com/Grove-Luminance_Sensor/

Raspberry Pi Tutorials

21

Set the Variable that it's reading to be LUX

The proximity sensor can detect up to 80cm but we'll set our initial test to 20cm. Add another
Decision block above the LUX Decision block, and set to be cm<20:

 See Also: http://wiki.seeedstudio.com/Grove-80cm_Infrared_Proximity_Sensor/

Since, we need both conditions to be true for the LED to turn on, make sure that the second
decision is on the YES branch of the first decision.

http://wiki.seeedstudio.com/Grove-80cm_Infrared_Proximity_Sensor/

LABCENTER ELECTRONICS LTD.

22

Next, drag and drop the led on method at the bottom of the YES branch.

Finally, place the LED off method to the right of the main loop beside the LED on method.

Since we want the LED to turn off if either condition is false we can wire both NO branches from
the decisions to this method.

Finally, connect the bottom of the NO program branch back into the main program loop. Your
final program should look like the following:

Raspberry Pi Tutorials

23

Simulation and Testing
To test our program, all we need to do is press the play button and then adjust the distance
display on the proximity sensor and the lux display on the luminance sensor.

The LED should turn on when the distance value is less than 20 and it's a little cloudy.

LABCENTER ELECTRONICS LTD.

24

Pause the simulation and set a breakpoint on the LED off method.

Press play again to run the simulation and change either the distance or the light until the
breakpoint triggers

Raspberry Pi Tutorials

25

You'll notice that both our variables are available in the variables display.

Comparing these values to the tested decisions will tell us which condition has failed.

As you single step via the icons at the top you'll notice the LED turn off.

LABCENTER ELECTRONICS LTD.

26

Programming
 Before programming the Raspberry Pi you need to first perform the one time. See
Programming the Raspberry Pi

Since everything seems to working in good order, the remaining task is to plug in the Raspberry
Pi and program the real hardware. The process here is:

1) Plug the Grove sensors into the Grove baseboard in the same connectors as on the
schematic. See also the golden rule discussed earlier.

2) Connect the Grove hat to the Raspberry Pi and connect the Raspberry Pi to the same
WIFI as the computer. Now within Proteus within the project options change the
Programmer from NONE to RPISSH and the raspberry pi should appear.

3) Click the program upload button in Visual Designer.

4) The program will now run on the Hardware.

Raspberry Pi Tutorials

27

Tutorial 3 : Motor Control

Introduction
This tutorial shows how you can easily control both DC motors and Stepper motors with Visual
Designer. We'll do this using the Adafruit DC and Stepper motor hat for Raspberry Pi.

Setup
Start by creating a new Visual Designer Project and then Add the Raspberry Pi Hat with DC and
Stepper Motors from the peripheral menu.

Picking the Adafruit Hat from the Add Peripherals command in Visual Designer

Unlike the Arduino Hat the Raspberry Pi Hat lets you connect the motors yourself. This means
you need to first find the motors via the schematic pick devices form (MOTOR-DC & MOTOR-
BISTEPPER) and double click to insert them into the project.

LABCENTER ELECTRONICS LTD.

28

Using the Pick Devices Dialogue on the Schematic to add the motors to your design.

Then connect the part to the hat using the terminals. The usual rules apply in that terminals with
the same name are deemed connected together

Here you can see we have connected one stepper motor and two DC motors with connections
made by terminals.

Programming
For this project we will have 2 buttons, one will start a dc motor and the other will stop that
motor. After we have this project working we will then simulate it and work with the debugging
tools.

Firstly, you will need 3 components, 2 buttons and a motor. Add the two buttons using the add
peripheral method.

Raspberry Pi Tutorials

29

Add Button Peripheral.

Make sure you change the GPIO pins so that they are not both using the same pin

Make sure the buttons are assigned to unique GPIO Lines

You should already have at least one DC motor. If not then make pick one from the libraries and
make sure it is connected to motor 1 (M11,M12) of the hat. It should look something like this:

LABCENTER ELECTRONICS LTD.

30

Correctly connected DC Motor on Motor 1 of the Hat.

 Note that if you want the motor to appear in Visual Designer during simulation you will

need to draw an Active Popup box around the motor.

Now you can drag the code blocks on. We want to change the speed of motor 1 each time a
button is pressed. Button 1 will start the motor and button 2 will stop the motor. You won’t need
any code in setup. Your finished program should look like the following

Motor Control flowchart. Uses the sensor functions for the buttons to make decisions.

mk:@MSITStore:C:%5CPRODOCS%5CHTMLHELP%5CVISUALDESIGNER%5CBin%5CVISUALDESIGNER.chm::/TUTORIALS/Raspberry_Pi/Tutorial_1_Flashing_LED.htm#sensor_functions

Raspberry Pi Tutorials

31

Testing and Debugging
Now that the project is ready to go we can test it out in simulation. The remainder of this tutorial
is essentially a detailed look at simulation and stepping commands to make sure that you
understand how to control a running simulation and how you might debug problems with your
code.

The simulation is controlled from the animation control panel at the bottom left of the Proteus
application.

Here you will find the play, step, pause and stop buttons. The play button will start the project or
continue if the project is paused.

The step button will allow you to slowly step through the project pausing after every block of
code.

The pause button will pause time allowing you to look at variables, voltages and other elements.

The pause button will not stop the project and you can restart it with the play button.

The stop button will stop the whole project and allow you to edit and modify it.

Basic Single Stepping
We will start by simply pressing run, the program will start, and you will enter simulation mode.
Press button one to start the motor going. Let the motor gain some speed then press button 2 to
stop power to the motor. The motor will now slow down. Once you have tested this and
confirmed that everything is working properly you can stop the program using the stop button.

LABCENTER ELECTRONICS LTD.

32

Next, press the step button once to start then pause the program. At this stage the program
code is currently sat in the setup block. Next, pres the Step Into button to get to the end of the
Setup block:

You will now see the End of setup light up. This shows that the setup function has ended.

Pressing the Step Into button again will advance the program to the first decision block of the
loop routine.

If button 1 is pressed the code will follow the 'Yes' line, if its not pressed it will follow the 'No'
line. In our case the button is not pressed so when we keep stepping the code the program will
move through to the next decision block. We'll then continue running around this loop routine
until a button is pressed.

Raspberry Pi Tutorials

33

Finally, note that you can lock a button in place by pressing the red vertical arrows in the side of
it. This way it will be held down even when you take your mouse away

Stepping and Routines
Let's look now at how the step into and step out debugging commands work when we have sub-
routines in our program. These basically navigate us in and out of the program stack.

To help explain, we have modified our program to include a couple of sub-routine calls.

LABCENTER ELECTRONICS LTD.

34

In this new program you can step through however it will only highlight the event call and not
enter the event block. It will jump between CheckButton1, CheckButton2 and End without
entering the two events. If you do want to enter an sub-routine wait until the event is highlighted.

Then press step into to enter the routine and highlight the first code block in the routine.

We could continue to step through the routine with our normal step commands or use the step
out button to exit the routine and pause at the next code block following the return from the
routine.

Breakpoints
Breakpoints allow you to stop the code when it reaches a specific block of code. To toggle
breakpoints, enter Visual designer, right click on the block you wish to place the breakpoint and
toggle breakpoint.

Raspberry Pi Tutorials

35

Now run the program, assuming button 1 is up nothing will happen. The code will run normally
until you press button 1. Once button 1 has been pressed the code will pause on that block.

From here you can step through the code to debug further.

Debugging Generated Code
If you want to look deeper into what is happening in the code you can look directly at the code
and not the blocks. Right click on the project menu and select debug generated code.

Now when you run the project the flowchart won’t be present. Instead there is a blank screen.
By pressing the step button once it will load up the python script. Now every time you step it will
step line by line opposed to block by block.

LABCENTER ELECTRONICS LTD.

36

You should now be able to navigate and follow the code using the same debugging and
stepping tools we discussed earlier. To navigate through different routines, use the dropdown
box above the code.

Note about Addresses
Some hats are stackable such as this motor hat. When using multiple hats together you may
need to change the I2C addresses. You can do this by using the jumpers. The Hat will have a
base address, for the motor hat the base address is 0x60. The Jumpers work in binary so by
connecting A0 the address will go to 0X61, and connecting A1 the address will go to 0x62 and
so on. The motor hat has a possibility of 32 different addresses including address 0x60.

1

TURTLE SIMULTAION
INTRODUCTION

Overview
Robot turtles are extremely popular and fun to work with and are used extensively in both
education and hobbyist circles. While the possibilities are endless, problem solving typically falls
into three distinct categories:

1) Line Following.
2) Obstacle Avoidance.
3) Maze Escape.

Proteus combines an electrical model of the turtle (motors, sensors, etc,) together with the
Arduino baseboard and then presents a simple but flexible virtual world in which the turtle
motion can be simulated. Control of the turtle in Visual Designer is vastly simplified by the use
of high level methods in a flowchart program, while greater flexibility and complexity can be
managed by writing Arduino C code directly. Regardless of the coding choice the simulation,
test and debug takes place entirely inside the Proteus software before deploying to the physical
turtle.

The following robot turtles are currently supported:

Funduino
Web Link

The Funduino turtle is a simple robot using an Arduino Uno baseboard
alongside the motor driver board and 3 line hunter sensors. The ultrasonic
range finder sits on top along with a stepper motor which allows you to
swivel the sensor head. All of this is modelled in Proteus meaning that
you can write your flowchart or firmware program and then test it in
software.

Since the Funduino is the cheapest turtle we could find (around $50 at the time of writing) it's
not surprising to find some limitations. In particular, there are no position encoders on the motor
wheels and the line hunter sensors are digital.

mk:@MSITStore:C:%5CPRODOCS%5CHTMLHELP%5CVISUALDESIGNER%5CBin%5CTURTLE.chm::/Methods.htm
http://www.lightinthebox.com/funduino-little-smart-turtle-smart-car-learning-kit-for-arduino_p2305556.html

LABCENTER ELECTRONICS LTD.

2

Zumo
Web Link

The Zumo robot for Arduino is an Arduino-controllable tracked robot
platform. It includes two micro metal gearmotors coupled to a pair of
silicone tracks, a stainless steel bulldozer-style blade, an array of six
infrared reflectance sensors for line following or edge detection, a
buzzer for simple sounds and music, a 3-axis accelerometer,
magnetometer, and gyro for detecting impacts and tracking
orientation.

The zumo is a more advanced turtle than the Funduino and can perform far better at line
following and maze escape challenges but it does not have ultrasonic range finder and
therefore is not as well suited to obstacle avoidance challenges.

Virtual Environment / Obstacle Map
In order to test a written program the robot turtle needs an environment in which to operate
during a simulation run. While there are many sophisticated and complex physics engines on
the market, the goal of our simulation is to check and debug the firmware program and so we
have kept things very simple. Our virtual world is a picture drawn in MS Paint or similar in which
the following simple rules apply:

- 1 pixel is 1mm.
- Black is to be followed.
- Red is to be avoided.
- Green is a breakpoint and will pause your program !

From Left to Right : Line Following example, Obstacle Avoidance example and Line Following

with Obstacle example

To create and apply an environment for simulation
1) Draw the required route / obstacles in the graphics package of your choice. Remember that
the scale is 1 pixel to 1 mm so drawing a 5 pixel wide line will equate to 5mm in the real world.
Width of the line being followed can affect the algorithm (e,g if all the sensors are never over the
line) so it's important to give this some thought.

https://www.pololu.com/category/169/zumo-robot-for-arduino

Turtle Simulation

3

2) Save the graphic as a PNG file into the same directory as your Proteus project.

3) Edit the turtle component on your schematic and specify the graphic you have just saved as
the obstacle map.

LABCENTER ELECTRONICS LTD.

4

4) Run the simulation.

Positioning the turtle in the virtual world
 The turtle can be picked up and placed somewhere else on the map with the left mouse.

 You can rotate the turtle by holding the CTRL key and using the left mouse.

You can specify an initial position by first pausing the simulation, then positioning as required
and finally, right clicking and specifying the current position as the new start position.

Turtle Simulation

5

TUTORIAL - OBSTACLE AVOIDANCE

Introduction
This tutorial shows how to set up a Visual Designer project with the Funduino turtle, program it
to avoid obstacles and then test and deploy to the real hardware.

 While we are using the Funduino turtle for this tutorial we could easily use the Zumo turtle
and change the challenge to something like a line follower. The principles are the same
for both turtles.

Project Setup
The first stage is to create the new project and add the Virtual Turtle.
1) Open the New Project Wizard from the Proteus home page and specify the project name and
destination path as required.

2) Create the schematic from the default template and then create a flowchart project with the
Arduino Uno.

LABCENTER ELECTRONICS LTD.

6

 If your license key includes Proteus PCB Design you will need to choose not to create a
PCB on that page of the wizard. If your license does not include PCB design you will not
see the PCB design page of the wizard.

3) Continue and exit the wizard to create your project. You should see on the Visual Designer
tab that you have a skeleton flowchart with the familiar Arduino setup and loop routines while on
the schematic you'll find the Arduino Uno pre-placed.

4) We now need to add the Virtual turtle to the project. We do this from the Add peripheral
command in Visual Designer.

5) The next thing we need to do is create an obstacle map or virtual world for our turtle to
simulate in. To do this we open MS Paint (click on START button and type in 'paint' in WIN8 or
higher) or similar and draw some obstacles. The two vital points to remember are that anything
red is considered an obstacle and that one pixel equals one millimeter. If we set our canvas to
2000 pixels wide by 1500 pixels that corresponds to around 2 meters by 1 1/2 meters in the real
world which is plenty for an obstacle avoidance playground. After that, simply place a few red
shapes inside a 'play area' to act as the obstacles and then save our as a PNG file.

Turtle Simulation

7

 If we were setting up a line-following environment we would use black lines for the course

to be followed and then shrink the canvas size around the map (the world doesn't need to
be much bigger than the race-course).

6) The final task is to tell Proteus which obstacle map to simulate the turtle inside. We do this by
editing the Virtual Turtle on the schematic and specifying the location of the obstacle map in the
resulting dialogue form.

Firmware Design
When we added the Funduino turtle to our project above we received a number of high level
methods that we can use on the flowchart to control the turtle. These are discussed individually
in the Visual Designer methods topic which may prove a useful reference as we work through
the program. We'll also assume here that the user is familiar with the basics of flowchart design
in Visual Designer - these are covered in depth in other tutorials.

 You'll find the completed program in the Obstacle Avoidance sample design so if you are
comfortable with the firmware design you can load the completed version (File Menu ->
Open Sample, type 'obstacle avoidance', select and open) and continue to the simulation
and debug section of the tutorial.

LABCENTER ELECTRONICS LTD.

8

Our basic algorithm will be to continuously send out sonar bursts (ping method), to compare
against previous values (test if we are stuck) and then check distance to obstacle if not stuck
(test if we need to turn now). The first step is to create some working variables and initialize
them in the setup routine.

Add 3 variables: LastPingValue (Float), PingValue (Float) & SamePingValueCount (Integer).

At the top of the loop routine we then want to set out ping method by dragging and dropping
from the project tree and assigning the result to our pingValue variable.

The result of this is the basis of our decision making. Our first test is to see whether the value is
approximately the same as the last one. If it is we'll consider ourselves to be the same distance
from the obstacle. What we need then is to place a decision block, subtract the current
pingvalue from the previous ping value and we'll consider a difference of less than 0.5 to mean
that our distance from the obstacle is unchanged. Note that we use the fabs() math function to
return an absolute floating point value.

Turtle Simulation

9

This branches our program into two forks, one where we are considered the same distance
from the obstacle and the other where we are not. As in the image below, we do this by
incrementing our samevaluecount variant in one direction (YES), or resetting it in the other
direction (NO). This is done by dragging and dropping assignment blocks.

In the case where we are not stuck our job is fairly simple. Without going into detail we test
whether we are closer than 15cm to the obstacle and we turn right if we are or keep going
forwards if we are not. A delay is used at the end to allow a little driving time before the next
iteration of the loop.

In the case where we may be stuck we need to test whether we have registered the same
distance from an obstacle many times and, if so, we will reverse for a little bit and then turn right
for a little bit before rejoining the main loop at the bottom. This is shown below.

LABCENTER ELECTRONICS LTD.

10

 As said earlier, the completed code can be found in the sample in the 'Avoid Obstacle'

sample design in the Visual Designer section.

Simulation and Debug
Having written our program we can compile via the Build Project command or the icon at the top
of Visual Designer. Progress will be shown on the output window at the bottom of the editing
window and we should eventually see a compiled successfully message.

Pressing the play button on the animation control panel will then start the simulation. You will
see a popup window hosting the obstacle map that we created in the setup and a little turtle
driving around inside it. The purple cone shows the range and scope of the sonar and the turtle
behaviour is dictated by the program we have just written. For example, if we stop the
simulation and change the distance test from 15cm to 5cm and then re-run the simulation you

Turtle Simulation

11

will see that the turtle is getting very close to obstacles before turning and will actually crash
when approaching at certain angles.

We can pause the simulation at any time via the pause button on the animation control panel

Setting Breakpoints
If we need to we can set breakpoints in several different ways:

1) Via the right click context menu on one of the flowchart blocks.

LABCENTER ELECTRONICS LTD.

12

2) By drawing in green on the obstacle map.

3) By setting up a condition on a watch window item.

Regardless of how the breakpoint is triggered, the reason that we set it is so that we can
investigate the behaviour of the turtle more closely at that point. With Proteus, we are in the
unique position that we can control time because the turtle is simulating under our control. This
means for example that we can step through the code and the turtle will behave exactly as it
would have were there no debugging in place (motors won't lose momentum etc.).

Single Stepping
We can step through the code for our turtle program at multiple levels:

Turtle Simulation

13

1) At flowchart level by right clicking and setting a breakpoint on the flowchart block.

2) At source code level by first stopping the simulation and then selection the debug
generated code command from the project tree.

 Make sure you use the Debug Generated Code command and not the Convert to Source
Project command here. This will switch your project from flowchart to source code but it is
not a reversible operation.

3) At machine code level by selecting the disassembly command from the context menu.

In either case the single step commands can be found on the debug menu or via the icon strip
at the right hand side of the main window.

LABCENTER ELECTRONICS LTD.

14

 You can also use the shortcut keys F10 for step over and F11 for step into.

Changing the Virtual Environment
One of the neatest things about virtual turtle simulation is just how easy and fast it is to test your
program against challenges of different sizes and complexity. All you have to do is change the
picture and then enter the name in the properties of the component. Here's a few line following
examples

Programming the Physical Turtle

Proteus includes built in support for the common AVRDUDE programmer so that you can
program the real hardware directly from the Proteus software.

This process is discussed in full in the Visual Designer help documentation linked below.

1

VISUAL DESIGNER COMMAND
REFERENCE

Introduction

When working in Visual Designer, a lot of the complexity of driving the turtle is provided by
several high level methods that abstracts much of the electronics complexity, leaving the user to
focus on the control algorithms. Since each turtle is made up of different pieces the driver
methods in Visual Designer for each are also different. These are discussed below.

Advanced users can simply convert their project to a source code project via the context menu
command on the project tree and then write their programs in Arduino C.

 Once a program is switched to be a source code project from a flowchart project you
cannot switch back.

This may have some advantages as users can access the on board peripherals (e.g. gyro,
accelerometer) at the register level but will undoubtedly be more challenging. At the end of the
day, the Proteus simulation is of the real hardware however which means that users can
develop their programs in whatever way they want. In particular, it means that 3rd party libraries
and source code examples on the internet can be added, used and tested in a Proteus code
project.

LABCENTER ELECTRONICS LTD.

2

Funduino Turtle

Control of the turtle falls into three categories :

 Using the line hunter sensors to detect position relative to a line..

 Using the sonar head to detect obstacles.

 Driving the two DC motors attached to the wheels.

Line Hunter Control
There are three sensors underneath the Funduino turtle. These provide a digital response to the
circuit based on whether they detect the line or not. In Visual Designer we query these sensors
with a single decision block called the sensor function. You use the sensor function by dragging
and dropping directly from the peripheral in the project tree as shown below:

We then need to edit the decision to test the sensors based on a set of conditions we wish to be
true. There are three parameters corresponding to the left, center and right sensors and for
each one we can test as follows:

1 : Must be TRUE.

0 : Must be FALSE.

-1 : Don't care.

Examples
If we want to test that all 3 sensors are over the line we would set all three parameters to 1.

All three sensors can see the line

Command Reference

3

When this decision is true you know that the turtle is fully over the line and you may choose to
attempt some damping or correction if the turtle is wobbling.
If we want to check when we need to make a sharp turn right then we are looking at the case
when only the right hand sensor is picking up the line.

Only the right hand sensor sees the line

If we want to simply drive forwards then testing that the middle sensor is over the line is likely
sufficient, provided we do so after other relevant conditions have been tested.

Sonar Head Control
The ultrasonic sonar sends out short bursts (pings) to detect obstacles and is mounted on a
rotatable unit. This allows users to first position the sonar head and then check for obstacles
inside a certain range. There are three methods and a sensor function for the sonar head.
Sensor (Sonar) Function
The sensor function is a decision block that allows you to query the peripheral and it is used by
dragging and dropping from the peripheral itself in the Project Tree. In the case of the Sonar
Head the decision block takes two arguments for distance and head angle. It returns true if an
object is detected within the specified distance at the given head angle. The example below
would return TRUE if an obstacle was within 50cm on the left of the turtle.

setAngle() Method
The setAngle() method allows you to position the sonar head. For most applications this will be
added to the setup routine with a value of 0 (start by looking straight ahead) and then if required
through program execution.

LABCENTER ELECTRONICS LTD.

4

setRange() Method
The setRange() method allows you to specify the maximum range in which you want to detect
obstacles. This is significant as it determines the time-frame in which the firmware will consider
the reply to a ping to count as a reflection from an obstacle. You would normally set this (as
small as possible) inside the setup routine and then adjust as required in the program.

ping() Method
The ping() method fires a sonar burst, converts time to response into distance in cm and returns
either that value or -1 if nothing is detected. After placement, the user must edit the method call
and assign the return value to a variable.

 This variable must be a FLOAT variable otherwise it will not appear in the 'Results' drop
down list.

Command Reference

5

Motor Drive Control
The Drive methods give control over the left and right wheels of the motor. The user is
presented with a series of simple control methods as follows.

Drive() Method
The drive method allows you to specify the wheel(s) to control, the direction of travel and the
speed. The latter is a value from 0 -> 255 and represents the duty cycle of the PWM drive
signal. For example, you might set up full speed ahead as both wheels forwards at around
speed 200.

Forwards() Method
With the forwards() method the direction of travel is explicit and so all that is needed is the
speed value.

Backwards() Method
As with the forwards() method, all that is needed is the speed at which to reverse.

LABCENTER ELECTRONICS LTD.

6

Turn() Method
The turn() method simplifies the turning of the turtle by allowing you to specify a speed of turn.
Negative values turn left while positive values turn right and the magnitude of the value is the
speed of turn. In practise, this will execute a turn by turning one wheel forwards and the other
backwards at the specified speed. It can therefore be thought of as a sharp turn where a soft
turn involves stopping one wheel and turning the other.

 The same effect can be achieved with greater precision by using the drive() command

twice and controlling speed of wheels independently.

Stop() Method
The stop() method immediately stops drive of both wheels.

Zumo Turtle

Control of the Zumo turtle in Visual Designer falls into three basic categories :

 Using the line hunter sensors to detect position relative to a line.

 Using the gyro and compass to position or orientation the turtle.

 Driving the two motors attached to the tracks.

Line Follower Control
The Zumo comes with a mounted array of six IR reflectance sensors that allows the Zumo to
detect contrasts in reflectivity directly beneath its blade, which can be used for following lines or
detecting edges. Each reflectance sensor consists of an IR emitter coupled with a
phototransistor that responds based on how much emitter light is reflected back to it. Unlike the
Funduino therefore, the Zumo is well suited to Proportional Integral Derivative (PID) control
algorithms when line following.

Command Reference

7

readLinePos() method

- Takes no parameters.

 - Returns an integer between 0 and 6000 indicating the position of the line underneath the six
IR sensors.

This method first reads the calibrated value from each of the six sensors into an array. Values
per sensor range from 0 to 1000 where and are a measure of the reflectance in abstract units,
with higher values corresponding to lower reflectance (e.g. a black surface or a void). An
estimated position of the robot with respect to the line is then calculated used a weighted
average of the sensor values multiplied by 1000. This means that a return value of 0 means that
the line is directly under sensor 0, a return value of 1000 indicates that the line is directly below
sensor 1 and so on. Intermediate values indicate that the line is between two sensors. The
formula used is :

Example:

1) Add the Zumo turtle to the Visual Designer Project.

LABCENTER ELECTRONICS LTD.

8

2) Drag and drop the readLinePos() method onto the flowchart.

3) Edit the method and create an integer variable (e.g. linePos). Set the variable to store
the return value from the method.

If you get a value of 0 the line is underneath the far left hand sensor, 1000 means the line is
flush underneath the second sensor from the left, 2500 means that the line is right in the middle
of the turtle between sensors 3 and 4 and a value of 6000 means that the line is underneath the
far right sensor.
readRawValue() method

- Takes an integer parameter corresponding to the index of the IR sensor you want to read
(0..5).

- Returns the raw (uncalibrated) value from the specified sensor.

The number returned is based on the reflectance. The higher the number, the less reflectance
so a black line gives a high value. The numbers are not calibrated meaning that care is required
with return values as they would change under different conditions in the real world.

Command Reference

9

Example:

1) Drag and drop the readRawValue() method onto the flowchart.

2) Edit the method and create an integer variable (e.g. rawSensorValue). Set the variable
to store the return value from the method.

3) Set the index parameter to specify which sensor you want to query. 0 is the left hand
sensor, 5 is the right hand sensor.

Compass Control
The Zumo includes an integrated LSM303D chip which can be controlled by the following Visual
Designer methods:

readMagneticField() method

- Takes three floating point parameters (void readMagneticField (float *magX, float *magY, float
*magZ))

- Returns the X,Y,Z components of the magnetic field in units of Gauss.

LABCENTER ELECTRONICS LTD.

10

This method passes in pointers to three floating point variables and the internal routine then
populates them with the X,Y and Z components of the magnetic field. Note that the compass is
widely inaccurate in relative and absolute terms. I.e. the vector is offset from the origin and
North is impossible to determine without calibration.

 In the read device the compass gets a lot of interference from the motors, batteries, PCB,
and its surroundings, so it is not generally useful for precision navigation. However,
having been calibrated it can be used for rough orientation measuring in many
environments.

Example:

1) Drag and drop the method onto the flowchart.

Command Reference

11

2) Edit the method and create three new variables (e.g. magX, magY, magZ)

3) Enter the three variables in to the Results field separated by a comma. This passes the
three variables as parameters to the method.

calibrateHeading() method

- Takes no parameters

- Returns no values

This function uses the drive method to spin the Zumo on the spot and take multiple magnetic
readings. It takes the minimum and maximum X and Y magnetic values found and uses these to
calculate the centre. It stops spinning when no new min or max values are set over a period of
500ms. Before calling this function it assumes the Zumo is facing North. Thus is uses the
first magnetic reading to work out the angle of the vector that points to North.

LABCENTER ELECTRONICS LTD.

12

readHeading() method

- Takes no parameters

- Returns a float representing the heading.

This function requires calibrateHeading() to have been called. If it hasn't then -1.0 is returned.
Otherwise the heading angle in degrees limited to [-180.0, +180.0] is returned (0 is North).

Example:

1) Drag and drop the calibrateHeading() method onto the flowchart. This is best done at
the very beginning where the Zumo can be pointed north so the setup routine makes
sense.

2) Drag and drop the readHeading() method anywhere after the calibration routine.

Command Reference

13

3) Edit the readHeading() method and create a variable of type float (e.g. heading) to
receive the function return.

A value of 0 means the Zumo is pointing north, a value of 180 means South, a value of -90
means West and so on.

Gyro Control
The Zumo (V1.2) includes an integrated L3GD20H 3-axis gyroscope that can be used to track
rotation and, together with the LSM303D effectively provides an inertial measurement unit that
programs can use. The Visual Designer wraps some of this functionality in two high level
methods:
readAngularAcc() method

- Takes three floating point parameters (void readAngularAcc(float *angX, float *angY, float
*angZ))

- Returns the X,Y,Z components angular acceleration in units of degrees per second.

This function returns the angular acceleration of the Zumo in three dimensions. Note however,
that due to the 2D nature of the simulation environment, only the angZ parameter will be non-
zero.

LABCENTER ELECTRONICS LTD.

14

Example:

1) Drag and drop the method onto the flowchart.

2) Edit the method and create three new variables (e.g. angX, angY, angZ)

Command Reference

15

3) Enter the three variables in to the Results field separated by a comma. This actually
passes pointers to the three variables into the method which will then return the relevant
values.

readLinearAcc() method

- Takes three floating point parameters (void readLinearAcc (float *linX, float *linY, float *linZ))

- Returns the X,Y,Z components angular acceleration in units of G.

This function returns the linear acceleration in three dimensions.
The actual measurement of linear acceleration is on the LSM303 device whereas the angular
acceleration is read from the L3GD20H device. Linear acceleration is a tricky one to measure in
a simulation environment as it happens over such a short amount of time. The following is an
explanation of the implementation:

The physics modelling does not simulate acceleration - when a the turtle is driven it sets the
speed instantaneously. The reason for this is that the turtle and Zumo get up to speed so
quickly there was any point in modelling it. However, this is no good if you're measuring linear
acceleration. So acceleration has been modelled by looking at the change in velocity from one
(simulation) frame to the next and limiting the change to a maximum of 1G for driven
acceleration and 10G for collisions. Obviously, 1G accelerations occur over more frames than
10G accelerations and therefore are more successful to catch when polling the device for
changes.

In practice, we assume the linear acceleration may be used in a tight loop to test against a
collision with an obstacle. We welcome feedback on this - tell us what you are doing and if our
implementation is lacking.

Motors Drive Control
The Zumo contains two integrated micro metal gearmotors with a DRV8835 dual motor driver to
control them. The following methods are used in Visual Designer to control this hardware.

LABCENTER ELECTRONICS LTD.

16

drive() method

- Takes three parameters (which wheel, which direction and what speed).

- Has no return value.

This is the workhorse method to move the Zumo turtle. It allows you to drive one or both of the
wheels in a direction and speed of your choice.

Example:

1) Drag and drop the drive method onto the flowchart.

2) Edit the method and specify the wheel and direction to drive.

3) Specify the speed at which you want to drive the wheel. This is a value between 0 and
255 where 255 represents full speed.

Command Reference

17

 The range 0..255 are used because they represent a byte and at a lower level the motor
is driven electronically by altering the duty cycle of a PWM signal (using the Arduino
analogWrite() method).

forwards() method

- Takes one parameter for speed.

- Has no return value.

With the forwards() method the direction of travel is explicit and so all that is needed is the
speed value.

backwards() method

- Takes one parameter for speed.

- Has no return value.

As with the forwards method except driving the turtle straight backwards at the specified speed.

LABCENTER ELECTRONICS LTD.

18

turn() method

- Takes one parameter for speed.

- Has no return value.

The turn command allows the Zumo to turn either clockwise or anti-clockwise at a given speed.
The range of the speed parameter is -255..255 where:

-255 -> 0 : turn anti-clockwise by driving right wheel forwards and left wheel backwards.

0->255 : turn clockwise by driving left wheel forwards and right wheel backwards.

Example:

1) Drag and drop the method onto the flowchart.

2) Edit the method and set the speed value between 0 and 255. Prefix with a minus sign if
you want to turn anti-clockwise.

turnDegrees() method

- Takes two integer parameters, one for the number of degrees to turn and the second for the
speed of turn.

- Has no return value.

Command Reference

19

The turnDegrees() method allows you to control the amount of turn programmatically. You
specify the number of degrees that you want to rotate (0..360) and the speed at which you wish
to do so (-255...255).

Internally, this method uses the gyro, reads the angular acceleration in Z and then calculates
the time needed to turn the specified number of degrees. It follows that, while fairly accurate, it
will be an approximation.

Example:

1) Drag and drop the method onto the flowchart.

2) Edit the method and set the speed value between 0 and 255. Prefix with a minus sign if
you want to turn anti-clockwise.

LABCENTER ELECTRONICS LTD.

20

3) Set the number of degrees to turn.

stop() method

- Takes no parameters

- Has no return value

This method will stop the motor drive and bring the turtle to a halt.

Mechanical Forces

It is important to understand that a Proteus simulation of the Virtual Turtle, while electrically
accurate, is not a physics aware simulation. The motor control of the turtle is open loop and
therefore the amount of distance travelled in a period of time is not deterministic. All sorts of
physical effects such as inertia, momentum, friction, load/slope and battery power can have
significant impact on distance travelled in the real device. In no way therefore should you rely on
a timed value in the programming of the device unless you are confident that the real world
conditions are not going to change.

 In the Zumo turtle you can query the distance travelled via the gyro which helps
enormously with writing the firmware but you still cannot determine the distance travelled
over a period of time in advance.

For example, the turtle may travel 20 cm on the table but 10cm on carpet, it may lose 20%
power as the batteries run down and may not start moving at all if the duty cycle of the PWM
doesn't provide enough power to overcome inertia.

Similarly, there may be significant differences in behaviour with line sensing depending on the
lighting conditions and the contrast of the line against the background.

	COPYRIGHT NOTICE
	TABLE OF CONTENTS
	VISUAL DESIGNER TUTORIAL
	INTRODUCTION
	What is Arduino™ / Genuino™?
	What is Raspberry Pi ?
	What is Grove ?
	Raspberry Pi: Limitations of Simulation
	GUIDED TOUR
	Visual Designer Environment
	Editing Layout
	Debugging Layout
	1) Menu's, Icons and Tabs
	2) Project Tree
	Control of Flowchart Sheets
	Control of Resource Files
	Control of Hardware Peripherals

	3) Flowchart Blocks
	4) Editing Window
	5) Output Window
	6) Simulation Control Panel
	7) Source Code Window
	8) Peripheral Popup Windows
	9) Active Popups
	10) Variables Window
	Expansion of compound types
	Change Notification and Previous Values
	Add to Watch Window
	Colours, Fonts and Flowcart Editor
	Fonts and Colours
	Text Editor
	Flowchart Editor

	Editing Skills
	Overview
	Navigation
	To zoom in and out on the Editing Window
	To pan across the sheet in the Editing Window
	To switch between sheets in the Editing Window

	 Placing, Selecting and Deleting Blocks
	To place a flowchart block

	Attaching, Moving and Detaching Blocks
	To attach a block to a flowchart
	To detach a block from a flowchart
	To attach a series of flowchart blocks
	To detach a series of flowchart blocks

	Editing a Block
	Variable and Function Listing
	Auto Complete
	Syntax and Type Checking

	Wiring blocks together
	To join blocks together with a flowline
	To adjust / move a placed flowline
	To delete a flowline
	Splitting the flowchart into columns
	To change the flow of decision blocks

	Clipboard Commands
	Adding, Using and Removing Peripherals
	To add a peripheral device
	To use a peripheral device
	To remove a peripheral device

	Adding, Using and Removing Variables
	To create a new variable
	To use an existing variable
	To edit a variable
	To remove a variable

	Flowchart Blocks
	Event / Subroutine Block
	End Block
	Assignment Block
	Subroutine Call Block
	Stored Data Block
	Peripheral Operation Block
	Time Delay Block
	Decision Block
	Loop Construct Block
	Count Loop
	For-Next Loop
	While-Wend Loop
	Repeat-Until Loop

	Interconnector Block
	Comment Block
	ARDUINO HARDWARE
	Introduction
	Arduino Base Board
	Arduino Shields
	Adding a Shield
	Writing a Program to Control a Shield
	Potential Pitfalls

	Grove Sensors and Modules
	Adding a Grove Module
	Potential Pitfalls

	Breakout Boards and Peripherals
	Potential Pitfalls

	Schematic Design
	Potential Pitfalls

	RASPBERRY PI HARDWARE
	Introduction
	Raspberry Pi Base Board
	Raspberry Pi Hats
	Adding a Hat
	Writing a Program to Control a Hat
	Potential Pitfalls

	Grove Sensors and Modules
	Adding a Grove Module
	Potential Pitfalls
	Breakout Boards and Peripherals
	Potential Pitfalls
	Schematic Design
	Potential Pitfalls

	DEBUGGING SKILLS
	Overview
	System Level Simulation
	To start a simulation
	To stop a simulation
	To pause a simulation
	To interact with a simulation

	Debugging Skills
	To set a software breakpoint
	To single step debug your flowchart
	To step to a block on the flowchart
	To set a timed breakpoint
	To set a hardware breakpoint
	To add a variable to the watch window
	To add other items to the watch window
	To set a conditional breakpoint
	To open a debug window

	RESOURCE FILES & DATA STORAGE
	Introduction
	How it Works
	The Filestore

	PROGRAMMING THE PHYSICAL HARDWARE
	Introduction
	A Quick Guide to Programming
	The Controller Dialog
	Processor, Family and Controller
	Embed Files Option
	Arduino Board Option
	Clock for Delays Option
	Programmer Option
	Interface Option
	COM Port Option
	Port Speed Option
	Resource Uploader

	Troubleshooting Guide
	Program Button is Disabled
	Problem
	Solution

	Programming takes a long time and then reports multiple errors
	Cause 1
	Problem
	Solution

	Cause 2
	Problem
	Solution

	Clock for Delays Error
	Problem
	Solution

	ELF File not found
	Problem
	Solution

	 CONFIGURING RASPBERRY PI
	Introduction
	Preparing the SD Card
	Copying Files
	Finding the Raspberry Pi
	Configuration of the Raspberry Pi
	Method 1: Inside Proteus
	Method 2: PuTTY
	Method 3 : Keyboard and Mouse

	ARDUINO TUTORIALS
	Introduction
	Arduino Tutorials
	Tutorial 1 : Flashing an LED (Grove).
	Tutorial 2 :Nightlight (Grove)
	Tutorial 3: Data Storage (AdaFruit Shield)
	Tutorial 4 : Motor Control (Adafruit Shield)
	Tutorial 5: LED (Schematic Design)

	Tutorial 1 : Flashing LED's
	Introduction
	New Project Wizard
	Adding a Peripheral
	Drag and Drop Flowchart Design

	TUTORIAL 2: LUX SENSOR
	Introduction
	Adding Hardware
	Golden Rule

	Designing the Program
	Simulating and Testing
	Programming

	TUTORIAL 3: DATA STORAGE
	Introduction
	Setup
	Designing the Program
	Taking Measurements
	Programming Hardware

	TUTORIAL 4 : MOTOR CONTROL
	Introduction
	DC Motor Control
	Stepper Motor Control

	TUTORIAL 5: SCHEMATIC BREADBOARD
	Introduction
	Drawing on the Schematic
	Picking
	Placing
	Wiring
	Designing our Program

	RASPBERRY PI TUTORIALS
	Introduction
	Raspberry Pi Tutorials
	Tutorial 1 : Flashing an LED (raw Pi).
	Tutorial 2 : Nightlight (w/ Grove).
	Tutorial 3 : Motor Control (w/ rPi Hat)

	Tutorial 1 : Flashing LED
	Introduction
	New Project Wizard
	Adding a Peripheral
	Flowchart Design
	Programming the Hardware

	Tutorial 2 : Night Light (w/ Grove)
	Introduction
	Adding Hardware
	Golden Rule
	Designing the Program
	Simulation and Testing
	Programming

	Tutorial 3 : Motor Control
	Introduction
	Setup
	Programming
	Testing and Debugging
	Basic Single Stepping
	Stepping and Routines
	Breakpoints
	Debugging Generated Code
	Note about Addresses

	TURTLE SIMULTAION
	INTRODUCTION
	Overview
	Funduino
	Zumo
	Virtual Environment / Obstacle Map
	Positioning the turtle in the virtual world
	TUTORIAL - OBSTACLE AVOIDANCE
	Introduction
	Project Setup
	Firmware Design
	Simulation and Debug
	Setting Breakpoints
	Single Stepping
	Changing the Virtual Environment

	Programming the Physical Turtle

	VISUAL DESIGNER COMMAND REFERENCE
	Introduction
	Funduino Turtle
	Line Hunter Control
	Examples
	Sonar Head Control
	Sensor (Sonar) Function
	setAngle() Method
	setRange() Method
	ping() Method

	Motor Drive Control
	Drive() Method
	Forwards() Method
	Backwards() Method
	Turn() Method
	Stop() Method

	Zumo Turtle
	Line Follower Control
	readLinePos() method
	readRawValue() method

	Compass Control
	readMagneticField() method
	calibrateHeading() method
	readHeading() method

	Gyro Control
	readAngularAcc() method
	readLinearAcc() method

	Motors Drive Control
	drive() method
	forwards() method
	backwards() method
	turn() method
	turnDegrees() method
	stop() method

	Mechanical Forces

