VSM Simulation

The Proteus Design Suite is unique in offering the ability to co-simulate both high and low-level micro-controller code in the context of a mixed-mode SPICE circuit simulation.

VSM in Education

Information on using Proteus VSM as a learning tool in education.

VSM for Business

The advantages of using Proteus VSM as a productivity tool in industry.

Download Evaluation

Download a demonstration copy of Proteus.

Buy VSM

Buy Proteus VSM simulation

What is Proteus VSM?

A detailed overview of our unique embedded simulation technology.

VSM Studio IDE

The VSM Studio IDE provides an integrated environment for your firmware development.

Advanced Simulation Features

The Advanced Simulation Features product adds graph based analysis to your Proteus simulation.

USB Simulation

Proteus USB simulation is a unique product for developing USB device products.

IoT Builder

IoT Builder makes it quick and easy to control remote Arduino™ & Raspberry Pi® electronics from a mobile device.

Embedded Peripherals

A listing of just some of the embedded peripherals models available as standard with Proteus VSM.

Supported Compilers

How to use your favorite toolchain with Proteus VSM.

VSM for Microchip™

Including the PIC10, PIC12, PIC16, PIC18, PIC24 & dsPIC33 range of microcontrollers.

VSM for ARM®

Including the Cortex™-M0, Cortex™-M3, Cortex™-M4 & ARM® LPC2000 MCU's.

VSM for Atmel®

Including ATTINY, AT90S, ATMEGA, 8051 and ARM microcontrollers.

VSM for Arduino™

Full support for popular Arduino boards and dozens of ready made shields.

VSM for NXP

Including 8051 and ARM microcontrollers.

VSM for Texas Instruments™

Including MSP430, PICCOLO and ARM microcontroller variants.

PCB Layout

Proteus PCB design software seamlessly combines Schematic Capture and PCB layout to provide a powerful, integrated and easy to use suite of tools for professional PCB Design.

Proteus PCB Design software In Business

Powerful productivity tools used across the world.

Proteus PCB Design software In Education

Teach modern PCB design techniques with commercial grade tools.

Download Evaluation

Download a demonstration copy of Proteus.

Buy PCB

Buy Proteus PCB design software

Schematic Capture Overview

A powerful design environment for modern electronics.

Hierarchical Design

Multi-sheet hierarchical design.

Design Reuse

Project Clips enables re-use of schematic and layout circuitry in future projects.

Bill Of Materials

Fully customisable Bill of materials reporting module.

Assembly Variants

Use managed assembly variants to create different product configurations from a single schematic.

Advanced Simulation Features

The Advanced Simulation Features product adds graph based analysis to your Proteus simulation.

PCB Layout Overview

A layout tool packed full of powerful, easy to use functionality.

Design Verification

User extendable, constraint driven design with an intuitive interface.

Automatic Length Matching

Full control over serpentine/accordion routing.

Auto-Routing

World Class shape based auto-routing included as standard with all packages.

MCAD Integration

Direct import of STEP/IGES models and export of STEP assemblies to mechanical CAD tools.

3D Viewer

Integrated 3D Visualization of the PCB with bare board view and height bounds check.

Project Notes

Documentation/reporting for your pcb design

Proteus Visual Designer

Proteus Visual Designer combines world class Proteus VSM simulation with a new flowchart programming engine to provide a truly integrated and intuitive development environment.

Proteus In Education

A global standard in education.

Download Evaluation

Evaluate the full set of features available in Proteus.

Buy Visual Designer

Buy Proteus Visual Designer

Proteus Visual Designer

Flowchart programming integrated with Proteus VSM simulation to provide a complete Arduino or Raspberry Pi development solution.

Visual Designer for Arduino™

Visual Designer includes dozens of pre-made Arduino Shields, Grove Sensors and Generic Breakout Boards to make hardware design easy.

Visual Designer for Raspberry Pi®

Visual Designer includes dozens of pre-made Pi Hats, Grove Sensors and Generic Breakout Boards to make hardware design easy.

Visual Designer Projects

Student projects using Visual Designer.

IoT Builder for Visual Designer

Easily control remote Arduino™ electronics from your mobile phone or tablet with Visual Designer and IoT Builder.

Virtual Turtle Robot Simulation

Program virtual Arduino™ turtles like the Funduino and Zumo, simulate, test and debug in Proteus and then deploy on the real hardware with a button press.

Advanced Simulation Features

The Advanced Simulation Features product adds graph based analysis to your Visual Designer simulations.

Ordering & Pricing

Learn more about the single user Proteus packages (enterprise and platinum) or use the product configurator to find a custom package.

Buy PCB

Buy Proteus PCB design

Buy VSM

Buy Proteus VSM simulation

Buy Visual Designer

Buy Proteus Visual Designer

How to Order

Information on how to generate a quotation and place an order as well as payment methods and delivery charges.

Commercial Price List

View the complete, single user commercial price list and build your own quotation.

Educational Pricing

View the complete, single user educational price list and build your own quotation.

Quotation Wizard

Our dynamic quotation wizard will guide your product selection and generate a custom quotation for you.

Upgrades and Maintenance

An explanation of the Proteus Update Service Contract, how it works and your software update options.

Terms Of Business

Important legal information on things like pricing, purchasing, payment, warranty and liability.

Contact Us

Contact Labcenter with any inquiry or for more information.

Find a Distributor

Find and contact a Labcenter Distributor near you.

Questions & Answers

Common questions and answers for potential customers.

Support & Contact

Technical support movies and links are found here along with contact details for Labcenter and our authorized distribution partners.

Contact Us

Contact Labcenter with any enquiry or for more information.

Find a Distributor

Find and contact a Labcenter Distributor near you.

How To Movies

Lots of tutorials and short movies showing you how to get the most out of the Proteus Design Suite.

Latest Release

Information on the latest features and additions to the Proteus Design Suite.

Technical Support

Details on technical support options available to Proteus users.

Downloads

Links to some support downloads that may be relevant to some use of the Proteus software.

About Us

A short company profile and some information about Labcenter Electronics Ltd.

News

The latest company and Proteus news.

Blog

The lastest articles from our PCB experts

Careers

Career opportunities with Labcenter Electronics.

When designing a 2-layer PCB there is no real need to consider the construction of the PCB at the fab house. However, when the number of layers on the board is four or more the stackup of the PCB is an important factor. The chosen layer stackup defines the available drill ranges for vias and can also impact on the EMC performance of the product. This post discusses common manufacturing processes for multi-layer PCBs and what information you should specify in your EDA tool to help with fabrication.

Constructing a multi-layer PCB


Before looking at how layer stacks are managed, it is worth a short recap of terminology and common fabrication options for PCBs.

  • Pre-preg is essentially woven fibreglass coated in unset epoxy resin.
  • A core is basically ready made copper-foil/pre-preg/copper-foil or copper-foil/pre-preg.

A board house will generally have double sided copper clad core in stock as a base to start from. They will drill, through-hole-plate and etch, one or more of these cores. They will then overlay the board with pre-preg, then either bond that to another core (this core could be a basic core or already have had additional layers of pre-preg and copper foil) or a foil. Multiple layers of pre-preg can be used together to make up thicker insulating layers.

This process creates a basic set of rules as to what is manufacturable using conventional processes, in particular for drilling. Let's take a closer look using a 4-layer board as an example.

4-Layer Board


With a 4-Layer board there are basically two ways to create the stack.

You can use two cores, individually drilled and plated and stuck together with pre-preg and then a final drill/plate pass:

PCB external 4 layers

Most PCB design software, including the Proteus Design Suite, refer to this type of stackup as external layer pairs because the cores are built from the outside in.

Alternatively, you can use one core which is drilled and plated. Then a layer of prepreg/foil is placed on either side of the board, this is cured, etched, drilled, plated.

PCB internal 4 layers

Unsurprisingly, this is normally referred to as internal layer pairs because the cores are built from the inside out.

When a multi-layer PCB is constructed a separate pass of the CNC Drilling machine is required for each drill span. This means that, having set up the layer stack there is a known legal set of drill spans which are possible. For example, in the 4-layer board discussed earlier you could have three drill spans in the case you were using two cores (external layer pairs) or two drill spans in the case you were using one core (internal layer pairs).

pcb layer stackup table

EDA Tool Setup


We can see from this that the layer stackup dictates available drilling ranges using standard manufacturing techniques. You cannot for example have a buried via between Inner 1 and Inner 2 if your 4-layer stack is constructed with external layer pairs. Therefore, when designing a multi-layer PCB the most important thing is to think through your required via usage and get the layer stackup configured in your EDA tool right at the beginning. This is also the place to specify the materials, thicknesses and dielectric constants for your PCB. This information is not only useful for the fab house but can also be used by your EDA tool; layer thicknesses, for example, can be used to include drill depth in length matching calculations.

Once the layer stackup is confirmed the next step is to define the via ranges you plan to use. Normally, the EDA tool can help you with this and will prevent you from creating a drill pass that is incompatible with the stackup option you have chosen. It can also then automatically choose the best via range to use when vias are dropped during board routing.

When you send your PCB for manufacture, all of this information is normally then exported in a manufacturing document to accompany the Gerber files.

To learn more about using the layer stackup in the Proteus Design Suite start by watching this helpful video:

We'd love to hear from you

More Like This

Find the right package for you

Product Wizard Try Proteus